23,646 research outputs found

    Smile detection in the wild based on transfer learning

    Full text link
    Smile detection from unconstrained facial images is a specialized and challenging problem. As one of the most informative expressions, smiles convey basic underlying emotions, such as happiness and satisfaction, which lead to multiple applications, e.g., human behavior analysis and interactive controlling. Compared to the size of databases for face recognition, far less labeled data is available for training smile detection systems. To leverage the large amount of labeled data from face recognition datasets and to alleviate overfitting on smile detection, an efficient transfer learning-based smile detection approach is proposed in this paper. Unlike previous works which use either hand-engineered features or train deep convolutional networks from scratch, a well-trained deep face recognition model is explored and fine-tuned for smile detection in the wild. Three different models are built as a result of fine-tuning the face recognition model with different inputs, including aligned, unaligned and grayscale images generated from the GENKI-4K dataset. Experiments show that the proposed approach achieves improved state-of-the-art performance. Robustness of the model to noise and blur artifacts is also evaluated in this paper

    Dilated Deep Residual Network for Image Denoising

    Full text link
    Variations of deep neural networks such as convolutional neural network (CNN) have been successfully applied to image denoising. The goal is to automatically learn a mapping from a noisy image to a clean image given training data consisting of pairs of noisy and clean images. Most existing CNN models for image denoising have many layers. In such cases, the models involve a large amount of parameters and are computationally expensive to train. In this paper, we develop a dilated residual CNN for Gaussian image denoising. Compared with the recently proposed residual denoiser, our method can achieve comparable performance with less computational cost. Specifically, we enlarge receptive field by adopting dilated convolution in residual network, and the dilation factor is set to a certain value. We utilize appropriate zero padding to make the dimension of the output the same as the input. It has been proven that the expansion of receptive field can boost the CNN performance in image classification, and we further demonstrate that it can also lead to competitive performance for denoising problem. Moreover, we present a formula to calculate receptive field size when dilated convolution is incorporated. Thus, the change of receptive field can be interpreted mathematically. To validate the efficacy of our approach, we conduct extensive experiments for both gray and color image denoising with specific or randomized noise levels. Both of the quantitative measurements and the visual results of denoising are promising comparing with state-of-the-art baselines.Comment: camera ready, 8 pages, accepted to IEEE ICTAI 201

    Fast Point Spread Function Modeling with Deep Learning

    Full text link
    Modeling the Point Spread Function (PSF) of wide-field surveys is vital for many astrophysical applications and cosmological probes including weak gravitational lensing. The PSF smears the image of any recorded object and therefore needs to be taken into account when inferring properties of galaxies from astronomical images. In the case of cosmic shear, the PSF is one of the dominant sources of systematic errors and must be treated carefully to avoid biases in cosmological parameters. Recently, forward modeling approaches to calibrate shear measurements within the Monte-Carlo Control Loops (MCCLMCCL) framework have been developed. These methods typically require simulating a large amount of wide-field images, thus, the simulations need to be very fast yet have realistic properties in key features such as the PSF pattern. Hence, such forward modeling approaches require a very flexible PSF model, which is quick to evaluate and whose parameters can be estimated reliably from survey data. We present a PSF model that meets these requirements based on a fast deep-learning method to estimate its free parameters. We demonstrate our approach on publicly available SDSS data. We extract the most important features of the SDSS sample via principal component analysis. Next, we construct our model based on perturbations of a fixed base profile, ensuring that it captures these features. We then train a Convolutional Neural Network to estimate the free parameters of the model from noisy images of the PSF. This allows us to render a model image of each star, which we compare to the SDSS stars to evaluate the performance of our method. We find that our approach is able to accurately reproduce the SDSS PSF at the pixel level, which, due to the speed of both the model evaluation and the parameter estimation, offers good prospects for incorporating our method into the MCCLMCCL framework.Comment: 25 pages, 8 figures, 1 tabl
    • …
    corecore