1,717 research outputs found

    Assessment of Driver\u27s Attention to Traffic Signs through Analysis of Gaze and Driving Sequences

    Get PDF
    A driver’s behavior is one of the most significant factors in Advance Driver Assistance Systems. One area that has received little study is just how observant drivers are in seeing and recognizing traffic signs. In this contribution, we present a system considering the location where a driver is looking (points of gaze) as a factor to determine that whether the driver has seen a sign. Our system detects and classifies traffic signs inside the driver’s attentional visual field to identify whether the driver has seen the traffic signs or not. Based on the results obtained from this stage which provides quantitative information, our system is able to determine how observant of traffic signs that drivers are. We take advantage of the combination of Maximally Stable Extremal Regions algorithm and Color information in addition to a binary linear Support Vector Machine classifier and Histogram of Oriented Gradients as features detector for detection. In classification stage, we use a multi class Support Vector Machine for classifier also Histogram of Oriented Gradients for features. In addition to the detection and recognition of traffic signs, our system is capable of determining if the sign is inside the attentional visual field of the drivers. It means the driver has kept his gaze on traffic signs and sees the sign, while if the sign is not inside this area, the driver did not look at the sign and sign has been missed

    On the use of SIFT features for face authentication

    Get PDF
    Several pattern recognition and classification techniques have been applied to the biometrics domain. Among them, an interesting technique is the Scale Invariant Feature Transform (SIFT), originally devised for object recognition. Even if SIFT features have emerged as a very powerful image descriptors, their employment in face analysis context has never been systematically investigated. This paper investigates the application of the SIFT approach in the context of face authentication. In order to determine the real potential and applicability of the method, different matching schemes are proposed and tested using the BANCA database and protocol, showing promising results

    Detection and Recognition of Traffic Signs Inside the Attentional Visual Field of Drivers

    Get PDF
    Traffic sign detection and recognition systems are essential components of Advanced Driver Assistance Systems and self-driving vehicles. In this contribution we present a vision-based framework which detects and recognizes traffic signs inside the attentional visual field of drivers. This technique takes advantage of the driver\u27s 3D absolute gaze point obtained through the combined use of a front-view stereo imaging system and a non-contact 3D gaze tracker. We used a linear Support Vector Machine as a classifier and a Histogram of Oriented Gradient as features for detection. Recognition is performed by using Scale Invariant Feature Transforms and color information. Our technique detects and recognizes signs which are in the field of view of the driver and also provides indication when one or more signs have been missed by the driver

    Beyond pairwise clustering

    Get PDF
    We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms
    corecore