6,137 research outputs found

    Simulation of optical interstellar scintillation

    Full text link
    Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected on a longer time scale when the light of remote stars crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. The aim of the study described in this paper is to fully simulate the scintillation process, starting from the molecular cloud description as a fractal object, ending with the simulations of fluctuating stellar light curves. Fast Fourier transforms are first used to simulate fractal clouds. Then, the illumination pattern resulting from the crossing of background star light through these refractive clouds is calculated from a Fresnel integral that also uses fast Fourier transform techniques. Regularisation procedure and computing limitations are discussed, along with the effect of spatial and temporal coherency (source size and wavelength passband). We quantify the expected modulation index of stellar light curves as a function of the turbulence strength --characterised by the diffraction radius RdiffR_{diff}-- and the projected source size, introduce the timing aspects, and establish connections between the light curve observables and the refractive cloud. We extend our discussion to clouds with different structure functions from Kolmogorov-type turbulence. Our study confirms that current telescopes of ~4m with fast-readout, wide-field detectors have the capability of discovering the first interstellar optical scintillation effects. We also show that this effect should be unambiguously distinguished from any other type of variability through the observation of desynchronised light curves, simultaneously measured by two distant telescopes.Comment: 11 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Effective moving cast shadow detection for monocular color image sequences

    Get PDF
    For an accurate scene analysis in monocular image sequences, a robust segmentation of a moving object from the static background is generally required. However, the existence of moving cast shadow may lead to an inaccurate object segmentation, and as a result, lead to further erroneous scene analysis. An effective detection of moving cast shadow in monocular color image sequences is developed. Firstly, by realizing the various characteristics of shadow in luminance, chrominance, and gradient density, an indicator, called shadow confidence score, of the probability of the region classified as cast shadow is calculated. Secondly the canny edge detector is employed to detect edge pixels in the detected region. These pixels are then bounded by their convex hull, which estimates the position of the object. Lastly, by analyzing the shadow confidence score and the bounding hull, the cast shadow is identified as those regions outside the bounding hull and with high shadow confidence score. A number of typical outdoor scenes are evaluated and it is shown that our method can effectively detect the associated cast shadow from the object of interest.published_or_final_versio

    Making light count

    Get PDF

    Soft shadows using sp-line approximation

    Get PDF
    © 2015 Penerbit UTM Press. All rights reserved. Realistic soft shadows are an important factor to enhance the realism of Augmented Reality systems. Without shadows, virtual objects would look floating over the scene resulting unrealistic rendering of AR environment. Little attention has been directed towards balanced trade-off between shadow quality and computational cost. In this study, a new approach is proposed; Quadratic Sp-line Interpolation (QSI) to soften the outline of the shadow. QSI estimates the border of hard shadow samples. In more details, a reflective hemisphere is used to capture real light then to create an environment map. Implementation of the Median Cut algorithm is performed to locate the direction of real light sources on the environment map. Subsequently, the original hard shadows are retrieved and a sample of multilayer hard shadows is produced. The proposed technique is tested by using three samples of multilayer hard shadows with a varied number of light sources that are generated from the Median Cut algorithm. The experimental results show that the proposed technique has successfully produced realistic soft shadows with low computational costs
    corecore