59,707 research outputs found
The minor house dust mite allergen Der p 13 is a fatty acid binding protein and an activator of a TLR2-mediated innate immune response
Background: The house dust mite (HDM) allergen Der p 13 could be a lipid-binding protein able to activate key innate signaling pathways in the initiation of the allergic response. We investigated the IgE reactivity of recombinant Der p 13 (rDer p 13), its lipid binding activities and its capacity to stimulate airway epithelium cells.
Methods: Purified rDer p 13 was characterized by mass spectrometry, circular dichroism, fluorescence-based lipid binding assays and in-silico structural prediction. IgE binding activity and allergenic potential of Der p 13 were examined by ELISA, basophil degranulation assays and in-vitro airway epithelial cell activation assays.
Results: Protein modeling and biophysical analysis indicated that Der p 13 adopts a β barrel structure with a predominately apolar pocket representing a potential binding site for hydrophobic ligands. Fluorescent lipid binding assays confirmed that the protein is highly selective for ligands and that it binds a fatty acid with a dissociation constant typical of lipid transporter proteins. The low IgE binding frequency (7%, n= 224) in Thai HDM-allergic patients as well as the limited propensity to activate basophil degranulation classifies Der p 13 as a minor HDM allergen. Nevertheless, the protein with its presumptively associated lipid(s) triggered the production of IL-8 and GM-CSF in respiratory epithelial cells through a TLR2-, MyD88-, NF-kB- and MAPK-dependent signaling pathway.
Conclusions: Although a minor allergen, Der p 13 may, through its lipid binding capacity, play a role in the initiation of the HDM allergic response through TLR2 activation
Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: peach Pru p 3 allergen as a model.
Lipid transfer proteins (LTPs) are the major allergens of Rosaceae fruits in the Mediterranean area. Pru p 3, the LTP and major allergen of peach, is a suitable model for studying food allergy and amino acid sequences related with its IgE-binding capacity. In this work, we sought to map IgE mimotopes on the structure of Pru p 3, using the combination of a random peptide phage display library and a three-dimensional modelling approach. Pru p 3-specific IgE was purified from 2 different pools of sera from peach allergic patients grouped by symptoms (OAS-pool or SYS-pool), and used for screening of a random dodecapeptide phage display library. Positive clones were further confirmed by ELISA assays testing individual sera from each pool. Three-dimensional modelling allowed location of mimotopes based on analysis of electrostatic properties and solvent exposure of the Pru p 3 surface. Twenty-one phage clones were selected using Pru p 3-specific IgE, 9 of which were chosen using OAS-specific IgE while the other 12 were selected with systemic-specific IgE. Peptide alignments revealed consensus sequences for each pool: L37 R39 T40 P42 D43 R44 A46 P70 S76 P78 Y79 for OAS-IgE, and N35 N36 L37 R39 T40 D43 A46 S76 I77 P78 for systemic-IgE. These 2 consensus sequences were mapped on the same surface of Pru p 3, corresponding to the helix 2-loop-helix 3 region and part of the non-structured C-terminal coil. Thus, 2 relevant conformational IgE-binding regions of Pru p 3 were identified using a random peptide phage display library. Mimotopes can be used to study the interaction between allergens and IgE, and to accelerate the process to design new vaccines and new immunotherapy strategie
Maize IgE binding proteins: each plant a different profile?
Background: Allergies are nearly always triggered by protein molecules and the majority of individuals with documented
immunologic reactions to foods exhibit IgE hypersensitivity reactions. In this study we aimed to understand if natural
differences, at proteomic level, between maize populations, may induce different IgE binding proteins profiles among
maize-allergic individuals. We also intended to deepen our knowledge on maize IgE binding proteins.
Results: In order to accomplish this goal we have used proteomic tools (SDS-PAGE and 2-D gel electrophoresis followed
by western blot) and tested plasma IgE reactivity from four maize-allergic individuals against four different protein fractions
(albumins, globulins, glutelins and prolamins) of three different maize cultivars. We have observed that maize cultivars have
different proteomes that result in different IgE binding proteins profiles when tested against plasma from maize-allergic
individuals. We could identify 19 different maize IgE binding proteins, 11 of which were unknown to date. Moreover, we
found that most (89.5%) of the 19 identified potential maize allergens could be related to plant stress.
Conclusions: These results lead us to conclude that, within each species, plant allergenic potential varies with genotype.
Moreover, considering the stress-related IgE binding proteins identified, we hypothesise that the environment, particularly
stress conditions, may alter IgE binding protein profiles of plant components
Sensitization profiles to purified plant food allergens among pediatric patients with allergy to banana.
Banana fruit allergy is well known, but neither immunoglobulin E recognition patterns to purified plant food allergens nor true prevalences of putative banana allergens have been established. This study aimed to characterize β-1,3-glucanase and thaumatin-like protein (TLP) as banana allergens, testing them, together with other plant food allergens, in 51 children with allergic reactions after banana ingestion and both positive specific IgE and skin prick test (SPT) to banana. Banana β-1,3-glucanase and TLP were isolated and characterized. Both banana allergens, together with kiwifruit TLP Act d 2, avocado class I chitinase Pers a 1, palm pollen profilin Pho d 2 and peach fruit lipid transfer protein (LTP) Pru p 3, were tested by in vitro and in vivo assays. Banana β-1,3-glucanase (Mus a 5) was glycosylated, whereas banana TLP (Mus a 4) was not, in contrast with its homologous kiwi allergen Act d 2. Specific IgE to both banana allergens, as well as to peach Pru p 3, was found in over 70% of sera from banana-allergic children, and Mus a 4 and Pru p 3 provoked positive SPT responses in 6 of the 12 tested patients, whereas Mus a 5 in only one of them. Both peptidic epitopes and cross-reactive carbohydrate determinants were involved in the IgE-binding to Mus a 5, whereas cross-reactivity between Mus a 4 and Act d 2 was only based on common IgE protein epitopes. Profilin Pho d 2 elicited a relevant proportion of positive responses on in vitro (41%) and in vivo (58%) tests. Therefore, Mus a 4 and LTP behave as major banana allergens in the study population, and profilin seems to be also a relevant allergen. Mus a 5 is an equivocal allergenic protein, showing high IgE-binding to its attached complex glycan, and low in vivo potency
Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab
Immunoglobulin E and its interactions with receptors FcϵRI and CD23 play a central role in allergic disease. Omalizumab, a clinically approved therapeutic antibody, inhibits the interaction between IgE and FcϵRI, preventing mast cell and basophil activation, and blocks IgE binding to CD23 on B cells and antigen-presenting cells. We solved the crystal structure of the complex between an omalizumab-derived Fab and IgE-Fc, with one Fab bound to each Cϵ3 domain. Free IgE-Fc adopts an acutely bent structure, but in the complex it is only partially bent, with large-scale conformational changes in the Cϵ3 domains that inhibit the interaction with FcϵRI. CD23 binding is inhibited sterically due to overlapping binding sites on each Cϵ3 domain. Studies of omalizumab Fab binding in solution demonstrate the allosteric basis for FcϵRI inhibition and, together with the structure, reveal how omalizumab may accelerate dissociation of receptor-bound IgE from FcϵRI, exploiting the intrinsic flexibility and allosteric potential of IgE
Differential immuno-kinetic assays of allergen-specific binding for peanut allergy serum analysis.
Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © Springer-Verlag 2012A label-free nanoparticle array platform has been used to detect total peanut allergen-specific binding from whole serum of patients suffering from peanut allergy. The serum from 10 patients was screened against a four-allergen panel of cat and dog dander, dust mite and peanut allergen protein Ara h1. The IgE and IgG contributions to the total specific-binding protein load to Ara h1 were identified using two secondary IgG- and IgE-specific antibodies and were found to contribute less than 50 % of the total specific protein load. The total mass of IgE, IgE and the unresolved specific-binding protein ΔsBP for Ara h1 provides a new serum profile for high-RAST-grade patients 5 and 6 with the IgG/IgE ratio of 4 ± 2 and ΔsBP/IgE ratio of 17 ± 11, neither of which is protective for the small patient cohort.BBSRCEPSR
A heterobivalent ligand inhibits mast cell degranulation via selective inhibition of allergen-IgE interactions in vivo
Current treatments for allergies include epinephrine and antihistamines, which treat the symptoms after an allergic response has taken place; steroids, which result in local and systemic immune suppression; and IgE-depleting therapies, which can be used only for a narrow range of clinical IgE titers. The limitations of current treatments motivated the design of a heterobivalent inhibitor (HBI) of IgE-mediated allergic responses that selectively inhibits allergen-IgE interactions, thereby preventing IgE clustering and mast cell degranulation. The HBI was designed to simultaneously target the allergen binding site and the adjacent conserved nucleotide binding site (NBS) found on the Fab of IgE Abs. The bivalent targeting was accomplished by linking a hapten to an NBS ligand with an ethylene glycol linker. The hapten moiety of HBI enables selective targeting of a specific IgE, whereas the NBS ligand enhances avidity for the IgE. Simultaneous bivalent binding to both sites provided HBI with 120-fold enhancement in avidity for the target IgE compared with the monovalent hapten. The increased avidity for IgE made HBI a potent inhibitor of mast cell degranulation in the rat basophilic leukemia mast cell model, in the passive cutaneous anaphylaxis mouse model of allergy, and in mice sensitized to the model allergen. In addition, HBI did not have any observable systemic toxic effects even at elevated doses. Taken together, these results establish the HBI design as a broadly applicable platform with therapeutic potential for the targeted and selective inhibition of IgE-mediated allergic responses, including food, environmental, and drug allergies
IgE-Mediated Hypersensitivity Reactions to Cannabis in Laboratory Personnel
Background: There have been sporadic reports of hypersensitivity reactions to plants of the Cannabinaceae family (hemp and hops), but it has remained unclear whether these reactions are immunologic or nonimmunologic in nature. Objective: We examined the IgE-binding and histamine-releasing properties of hashish and marijuana extracts by CAP-FEIA and a basophil histamine release test. Methods: Two workers at a forensic laboratory suffered from nasal congestion, rbinitis, sneezing and asthmatic symptoms upon occupational contact with hashish or marijuana, which they had handled frequently for 25 and 16 years, respectively. Neither patient had a history of atopic disease. Serum was analyzed for specific IgE antibodies to hashish or marijuana extract by research prototype ImmunoCAP, and histamine release from basophils upon exposure to hashish or marijuana extracts was assessed. Results were matched to those of 4 nonatopic and 10 atopic control subjects with no known history of recreational or occupational exposure to marijuana or hashish. Results: Patient 1 had specific IgE to both hashish and marijuana (CAP class 2), and patient 2 to marijuana only (CAP class 2). Controls proved negative for specific IgE except for 2 atopic individuals with CAP class 1 to marijuana and 1 other atopic individual with CAP class 1 to hashish. Stimulation of basophils with hashish or marijuana extracts elicited histamine release from basophils of both patients and 4 atopic control subjects. Conclusions: Our results suggest an IgE-related pathomechanism for hypersensitivity reactions to marijuana or hashish. Copyright (C) 2011 S. Karger AG, Base
Novel birch pollen specific immunotherapy formulation based on contiguous overlapping peptides.
BACKGROUND: Synthetic contiguous overlapping peptides (COPs) may represent an alternative to allergen extracts or recombinant allergens for allergen specific immunotherapy. In combination, COPs encompass the entire allergen sequence, providing all potential T cell epitopes, while preventing IgE conformational epitopes of the native allergen.
METHODS: Individual COPs were derived from the sequence of Bet v 1, the major allergen of birch pollen, and its known crystal structure, and designed to avoid IgE binding. Three sets of COPs were tested in vitro in competition ELISA and basophil degranulation assays. Their in vivo reactivity was determined by intraperitoneal challenge in rBet v 1 sensitized mice as well as by skin prick tests in volunteers with allergic rhinoconjunctivitis to birch pollen.
RESULTS: The combination, named AllerT, of three COPs selected for undetectable IgE binding in competition assays and for the absence of basophil activation in vitro was unable to induce anaphylaxis in sensitized mice in contrast to rBet v 1. In addition no positive reactivity to AllerT was observed in skin prick tests in human volunteers allergic to birch pollen. In contrast, a second set of COPs, AllerT4-T5 displayed some residual IgE binding in competition ELISA and a weak subliminal reactivity to skin prick testing.
CONCLUSIONS: The hypoallergenicity of contiguous overlapping peptides was confirmed by low, if any, IgE binding activity in vitro, by the absence of basophil activation and the absence of in vivo induction of allergic reactions in mouse and human.
TRIAL REGISTRATION: ClinicalTrials.gov NCT01719133
- …
