3,887 research outputs found

    IoT Sentinel: Automated Device-Type Identification for Security Enforcement in IoT

    Full text link
    With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing IP-connected devices for home and small office networks that often suffer from flawed security designs and implementations. They also tend to lack mechanisms for firmware updates or patches that can help eliminate security vulnerabilities. Securing networks where the presence of such vulnerable devices is given, requires a brownfield approach: applying necessary protection measures within the network so that potentially vulnerable devices can coexist without endangering the security of other devices in the same network. In this paper, we present IOT SENTINEL, a system capable of automatically identifying the types of devices being connected to an IoT network and enabling enforcement of rules for constraining the communications of vulnerable devices so as to minimize damage resulting from their compromise. We show that IOT SENTINEL is effective in identifying device types and has minimal performance overhead

    Fingerprinting Smart Devices Through Embedded Acoustic Components

    Full text link
    The widespread use of smart devices gives rise to both security and privacy concerns. Fingerprinting smart devices can assist in authenticating physical devices, but it can also jeopardize privacy by allowing remote identification without user awareness. We propose a novel fingerprinting approach that uses the microphones and speakers of smart phones to uniquely identify an individual device. During fabrication, subtle imperfections arise in device microphones and speakers which induce anomalies in produced and received sounds. We exploit this observation to fingerprint smart devices through playback and recording of audio samples. We use audio-metric tools to analyze and explore different acoustic features and analyze their ability to successfully fingerprint smart devices. Our experiments show that it is even possible to fingerprint devices that have the same vendor and model; we were able to accurately distinguish over 93% of all recorded audio clips from 15 different units of the same model. Our study identifies the prominent acoustic features capable of fingerprinting devices with high success rate and examines the effect of background noise and other variables on fingerprinting accuracy

    Locational wireless and social media-based surveillance

    Get PDF
    The number of smartphones and tablets as well as the volume of traffic generated by these devices has been growing constantly over the past decade and this growth is predicted to continue at an increasing rate over the next five years. Numerous native features built into contemporary smart devices enable highly accurate digital fingerprinting techniques. Furthermore, software developers have been taking advantage of locational capabilities of these devices by building applications and social media services that enable convenient sharing of information tied to geographical locations. Mass online sharing resulted in a large volume of locational and personal data being publicly available for extraction. A number of researchers have used this opportunity to design and build tools for a variety of uses – both respectable and nefarious. Furthermore, due to the peculiarities of the IEEE 802.11 specification, wireless-enabled smart devices disclose a number of attributes, which can be observed via passive monitoring. These attributes coupled with the information that can be extracted using social media APIs present an opportunity for research into locational surveillance, device fingerprinting and device user identification techniques. This paper presents an in-progress research study and details the findings to date

    Transfer Learning for Device Fingerprinting with Application to Cognitive Radio Networks

    Full text link
    Primary user emulation (PUE) attacks are an emerging threat to cognitive radio (CR) networks in which malicious users imitate the primary users (PUs) signals to limit the access of secondary users (SUs). Ascertaining the identity of the devices is a key technical challenge that must be overcome to thwart the threat of PUE attacks. Typically, detection of PUE attacks is done by inspecting the signals coming from all the devices in the system, and then using these signals to form unique fingerprints for each device. Current detection and fingerprinting approaches require certain conditions to hold in order to effectively detect attackers. Such conditions include the need for a sufficient amount of fingerprint data for users or the existence of both the attacker and the victim PU within the same time frame. These conditions are necessary because current methods lack the ability to learn the behavior of both SUs and PUs with time. In this paper, a novel transfer learning (TL) approach is proposed, in which abstract knowledge about PUs and SUs is transferred from past time frames to improve the detection process at future time frames. The proposed approach extracts a high level representation for the environment at every time frame. This high level information is accumulated to form an abstract knowledge database. The CR system then utilizes this database to accurately detect PUE attacks even if an insufficient amount of fingerprint data is available at the current time frame. The dynamic structure of the proposed approach uses the final detection decisions to update the abstract knowledge database for future runs. Simulation results show that the proposed method can improve the performance with an average of 3.5% for only 10% relevant information between the past knowledge and the current environment signals.Comment: 6 pages, 3 figures, in Proceedings of IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Hong Kong, P.R. China, Aug. 201

    No NAT'd User left Behind: Fingerprinting Users behind NAT from NetFlow Records alone

    Full text link
    It is generally recognized that the traffic generated by an individual connected to a network acts as his biometric signature. Several tools exploit this fact to fingerprint and monitor users. Often, though, these tools assume to access the entire traffic, including IP addresses and payloads. This is not feasible on the grounds that both performance and privacy would be negatively affected. In reality, most ISPs convert user traffic into NetFlow records for a concise representation that does not include, for instance, any payloads. More importantly, large and distributed networks are usually NAT'd, thus a few IP addresses may be associated to thousands of users. We devised a new fingerprinting framework that overcomes these hurdles. Our system is able to analyze a huge amount of network traffic represented as NetFlows, with the intent to track people. It does so by accurately inferring when users are connected to the network and which IP addresses they are using, even though thousands of users are hidden behind NAT. Our prototype implementation was deployed and tested within an existing large metropolitan WiFi network serving about 200,000 users, with an average load of more than 1,000 users simultaneously connected behind 2 NAT'd IP addresses only. Our solution turned out to be very effective, with an accuracy greater than 90%. We also devised new tools and refined existing ones that may be applied to other contexts related to NetFlow analysis
    • …
    corecore