3 research outputs found

    Identifying hypothetical genetic influences on complex disease phenotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistical interactions between disease-associated loci of complex genetic diseases suggest that genes from these regions are involved in a common mechanism impacting, or impacted by, the disease. The computational problem we address is to discover relationships among genes from these interacting regions that may explain the observed statistical interaction and the role of these genes in the disease phenotype.</p> <p>Results</p> <p>We describe a heuristic algorithm for generating hypothetical gene relationships from loci associated with a complex disease phenotype. This approach, called Prioritizing Disease Genes by Analysis of Common Elements (PDG-ACE), mines biomedical keywords from text descriptions of genes and uses them to relate genes close to disease-associated loci. A keyword common to, and significantly over-represented in, a pair of gene descriptions may represent a preliminary hypothesis about the biological relationship between the genes, and suggest the role the genes play in the disease phenotype.</p> <p>Conclusion</p> <p>Our experimentation shows that the approach finds previously published relationships, while failing to find relationships that don't exist. The results also indicate that the approach is robust to differences in keyword vocabulary. We outline a brief case study in which results from a recently published Type 2 Diabetes association study are used to identify potential hypotheses.</p

    A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lithium is an effective treatment for Bipolar Disorder (BD) and significantly reduces suicide risk, though the molecular basis of lithium's effectiveness is not well understood. We seek to improve our understanding of this effectiveness by posing hypotheses based on new experimental data as well as published data, testing these hypotheses in silico, and posing new hypotheses for validation in future studies. We initially hypothesized a gene-by-environment interaction where lithium, acting as an environmental influence, impacts signal transduction pathways leading to differential expression of genes important in the etiology of BD mania.</p> <p>Results</p> <p>Using microarray and rt-QPCR assays, we identified candidate genes that are differentially expressed with lithium treatment. We used a systems biology approach to identify interactions among these candidate genes and develop a network of genes that interact with the differentially expressed candidates. Notably, we also identified cocaine as having a potential influence on the network, consistent with the observed high rate of comorbidity for BD and cocaine abuse. The resulting network represents a novel hypothesis on how multiple genetic influences on bipolar disorder are impacted by both lithium treatment and cocaine use. Testing this network for association with BD and related phenotypes, we find that it is significantly over-represented for genes that participate in signal transduction, consistent with our hypothesized-gene-by environment interaction. In addition, it models related pharmacogenomic, psychiatric, and chemical dependence phenotypes.</p> <p>Conclusions</p> <p>We offer a network model of gene-by-environment interaction associated with lithium's effectiveness in treating BD mania, as well as the observed high rate of comorbidity of BD and cocaine abuse. We identified drug targets within this network that represent immediate candidates for therapeutic drug testing. Posing novel hypotheses for validation in future work, we prioritized SNPs near genes in the network based on functional annotation. We also developed a "concept signature" for the genes in the network and identified additional candidate genes that may influence the system because they are significantly associated with the signature.</p

    A bioinformatics approach reveals novel interactions of the OVOL transcription factors in the regulation of epithelial – mesenchymal cell reprogramming and cancer progression

    Get PDF
    Abstract Background Mesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model, OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET common to prostate cancer (PC) and breast cancer (BC). Results In the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility by regulating MET, and extend the hypothesis to include mechanisms not specific to MET. Conclusions We find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we show that the AP1/MYC TF pair is a strong candidate for intervention.http://deepblue.lib.umich.edu/bitstream/2027.42/109509/1/12918_2013_Article_1293.pd
    corecore