4,164 research outputs found

    Kernel-based machine learning protocol for predicting DNA-binding proteins

    Get PDF
    DNA-binding proteins (DNA-BPs) play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Attempts have been made to identify DNA-BPs based on their sequence and structural information with moderate accuracy. Here we develop a machine learning protocol for the prediction of DNA-BPs where the classifier is Support Vector Machines (SVMs). Information used for classification is derived from characteristics that include surface and overall composition, overall charge and positive potential patches on the protein surface. In total 121 DNA-BPs and 238 non-binding proteins are used to build and evaluate the protocol. In self-consistency, accuracy value of 100% has been achieved. For cross-validation (CV) optimization over entire dataset, we report an accuracy of 90%. Using leave 1-pair holdout evaluation, the accuracy of 86.3% has been achieved. When we restrict the dataset to less than 20% sequence identity amongst the proteins, the holdout accuracy is achieved at 85.8%. Furthermore, seven DNA-BPs with unbounded structures are all correctly predicted. The current performances are better than results published previously. The higher accuracy value achieved here originates from two factors: the ability of the SVM to handle features that demonstrate a wide range of discriminatory power and, a different definition of the positive patch. Since our protocol does not lean on sequence or structural homology, it can be used to identify or predict proteins with DNA-binding function(s) regardless of their homology to the known ones

    Protein Meta-Functional Signatures from Combining Sequence, Structure, Evolution, and Amino Acid Property Information

    Get PDF
    Protein function is mediated by different amino acid residues, both their positions and types, in a protein sequence. Some amino acids are responsible for the stability or overall shape of the protein, playing an indirect role in protein function. Others play a functionally important role as part of active or binding sites of the protein. For a given protein sequence, the residues and their degree of functional importance can be thought of as a signature representing the function of the protein. We have developed a combination of knowledge- and biophysics-based function prediction approaches to elucidate the relationships between the structural and the functional roles of individual residues and positions. Such a meta-functional signature (MFS), which is a collection of continuous values representing the functional significance of each residue in a protein, may be used to study proteins of known function in greater detail and to aid in experimental characterization of proteins of unknown function. We demonstrate the superior performance of MFS in predicting protein functional sites and also present four real-world examples to apply MFS in a wide range of settings to elucidate protein sequence–structure–function relationships. Our results indicate that the MFS approach, which can combine multiple sources of information and also give biological interpretation to each component, greatly facilitates the understanding and characterization of protein function

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Incorporating genome-scale tools for studying energy homeostasis

    Get PDF
    Mammals have evolved complex regulatory systems that enable them to maintain energy homeostasis despite constant environmental challenges that limit the availability of energy inputs and their composition. Biological control relies upon intricate systems composed of multiple organs and specialized cell types that regulate energy up-take, storage, and expenditure. Because these systems simultaneously perform diverse functions and are highly integrated, they are extremely difficult to understand in terms of their individual component contributions to energy homeostasis. In order to provide improved treatments and clinical options, it is important to identify the principle genetic and molecular components, as well as the systemic features of regulation. To begin, many of these features can be discovered by integrating experimental technologies with advanced methods of analysis. This review focuses on the analysis of transcriptional data derived from microarrays and how it can complement other experimental techniques to study energy homeostasis

    Cancer characterization and feature set extraction by discriminative margin clustering

    Get PDF
    BACKGROUND: A central challenge in the molecular diagnosis and treatment of cancer is to define a set of molecular features that, taken together, distinguish a given cancer, or type of cancer, from all normal cells and tissues. RESULTS: Discriminative margin clustering is a new technique for analyzing high dimensional quantitative datasets, specially applicable to gene expression data from microarray experiments related to cancer. The goal of the analysis is find highly specialized sub-types of a tumor type which are similar in having a small combination of genes which together provide a unique molecular portrait for distinguishing the sub-type from any normal cell or tissue. Detection of the products of these genes can then, in principle, provide a basis for detection and diagnosis of a cancer, and a therapy directed specifically at the distinguishing constellation of molecular features can, in principle, provide a way to eliminate the cancer cells, while minimizing toxicity to any normal cell. CONCLUSIONS: The new methodology yields highly specialized tumor subtypes which are similar in terms of potential diagnostic markers
    • …
    corecore