12,711 research outputs found

    A stochastic multiple players multi-issues bargaining model for the Piave river basin

    Get PDF
    The objective of this paper is to investigate the usefulness of non-cooperative bargaining theory for the analysis of negotiations on water allocation and management. We explore the impacts of different economic incentives, a stochastic environment and varying individual preferences on players’ strategies and equilibrium outcomes through numerical simulations of a multilateral, multiple issues, non-cooperative bargaining model of water allocation in the Piave River Basin, in the North East of Italy. Players negotiate in an alternating-offer manner over the sharing of water resources (quantity and quality). Exogenous uncertainty over the size of the negotiated amount of water is introduced to capture the fact that water availability is not known with certainty to negotiating players. We construct the players’ objective function with their direct input. We then test the applicability of our multiple players, multi-issues, stochastic framework to a specific water allocation problem and conduct comparative static analyses to assess sources of bargaining power. Finally, we explore the implications of different attitudes and beliefs over water availability.Bargaining, non-cooperative game theory, simulation models, uncertainty

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    A Stochastic Multiple Players Multi-Issues Bargaining Model for the Piave River Basin

    Get PDF
    The objective of this paper is to investigate the usefulness of non-cooperative bargaining theory for the analysis of negotiations on water allocation and management. We explore the impacts of different economic incentives, a stochastic environment and varying individual preferences on players’ strategies and equilibrium outcomes through numerical simulations of a multilateral, multiple issues, non-cooperative bargaining model of water allocation in the Piave River Basin, in the North East of Italy. Players negotiate in an alternating-offer manner over the sharing of water resources (quantity and quality). Exogenous uncertainty over the size of the negotiated amount of water is introduced to capture the fact that water availability is not known with certainty to negotiating players. We construct the players’ objective function with their direct input. We then test the applicability of our multiple players, multi-issues, stochastic framework to a specific water allocation problem and conduct comparative static analyses to assess sources of bargaining power. Finally, we explore the implications of different attitudes and beliefs over water availability.Bargaining, Non-Cooperative Game Theory, Simulation Models, Uncertainty

    A Stochastic Multiple Players Multi-Issues Bargaining Model for the Piave River Basin

    Get PDF
    The objective of this paper is to investigate the usefulness of non-cooperative bargaining theory for the analysis of negotiations on water allocation and management. We explore the impacts of different economic incentives, a stochastic environment and varying individual preferences on players’ strategies and equilibrium outcomes through numerical simulations of a multilateral, multiple issues, non-cooperative bargaining model of water allocation in the Piave River Basin, in the North East of Italy. Players negotiate in an alternating-offer manner over the sharing of water resources (quantity and quality). Exogenous uncertainty over the size of the negotiated amount of water is introduced to capture the fact that water availability is not known with certainty to negotiating players. We construct the players’ objective function with their direct input. We then test the applicability of our multiple players, multi-issues, stochastic framework to a specific water allocation problem and conduct comparative static analyses to assess sources of bargaining power. Finally, we explore the implications of different attitudes and beliefs over water availability.bargaining, non-cooperative game theory, simulation models, uncertainty

    Games for a new climate: experiencing the complexity of future risks

    Full text link
    This repository item contains a single issue of the Pardee Center Task Force Reports, a publication series that began publishing in 2009 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future.This report is a product of the Pardee Center Task Force on Games for a New Climate, which met at Pardee House at Boston University in March 2012. The 12-member Task Force was convened on behalf of the Pardee Center by Visiting Research Fellow Pablo Suarez in collaboration with the Red Cross/Red Crescent Climate Centre to “explore the potential of participatory, game-based processes for accelerating learning, fostering dialogue, and promoting action through real-world decisions affecting the longer-range future, with an emphasis on humanitarian and development work, particularly involving climate risk management.” Compiled and edited by Janot Mendler de Suarez, Pablo Suarez and Carina Bachofen, the report includes contributions from all of the Task Force members and provides a detailed exploration of the current and potential ways in which games can be used to help a variety of stakeholders – including subsistence farmers, humanitarian workers, scientists, policymakers, and donors – to both understand and experience the difficulty and risks involved related to decision-making in a complex and uncertain future. The dozen Task Force experts who contributed to the report represent academic institutions, humanitarian organization, other non-governmental organizations, and game design firms with backgrounds ranging from climate modeling and anthropology to community-level disaster management and national and global policymaking as well as game design.Red Cross/Red Crescent Climate Centr

    Identification and Estimation of Discrete Games of Complete Information

    Get PDF
    We discuss the identification and estimation of discrete games of complete information. Following Bresnahan and Reiss (1990, 1991), a discrete game is a generalization of a standard discrete choice model where utility depends on the actions of other players. Using recent algorithms to compute all of the Nash equilibria to a game, we propose simulation-based estimators for static, discrete games. With appropriate exclusion restrictions about how covariates enter into payoffs and influence equilibrium selection, the model is identified with only weak parametric assumptions. Monte Carlo evidence demonstrates that the estimator can perform well in moderately-sized samples. As an application, we study the strategic decision of firms in spatially-separated markets to establish a presence on the Internet.
    • 

    corecore