110,997 research outputs found

    Timing and Form of Federal Regulation: The Case of Climate

    Get PDF
    BACKGROUND: Common genetic variation and rare mutations in genes encoding calcium channel subunits have pleiotropic effects on risk for multiple neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia. To gain further mechanistic insights by extending previous gene expression data, we constructed co-expression networks in Timothy syndrome (TS), a monogenic condition with high penetrance for ASD, caused by mutations in the L-type calcium channel, Cav1.2METHODS: To identify patient-specific alterations in transcriptome organization, we conducted a genome-wide weighted co-expression network analysis (WGCNA) on neural progenitors and neurons from multiple lines of induced pluripotent stem cells (iPSC) derived from normal and TS (G406R in CACNA1C) individuals. We employed transcription factor binding site enrichment analysis to assess whether TS associated co-expression changes reflect calcium-dependent co-regulationRESULTS: We identified reproducible developmental and activity-dependent gene co-expression modules conserved in patient and control cell lines. By comparing cell lines from case and control subjects, we also identified co-expression modules reflecting distinct aspects of TS, including intellectual disability and ASD-related phenotypes. Moreover, by integrating co-expression with transcription factor binding analysis, we showed the TS-associated transcriptional changes were predicted to be co-regulated by calcium-dependent transcriptional regulators, including NFAT, MEF2, CREB, and FOXO, thus providing a mechanism by which altered Ca(2+) signaling in TS patients leads to the observed molecular dysregulationCONCLUSIONS: We applied WGCNA to construct co-expression networks related to neural development and depolarization in iPSC-derived neural cells from TS and control individuals for the first time. These analyses illustrate how a systems biology approach based on gene networks can yield insights into the molecular mechanisms of neural development and function, and provide clues as to the functional impact of the downstream effects of Ca(2+) signaling dysregulation on transcriptio

    Identification of responsive gene modules by network-based gene clustering and extending: application to inflammation and angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell responses to environmental stimuli are usually organized as relatively separate responsive gene modules at the molecular level. Identification of responsive gene modules rather than individual differentially expressed (DE) genes will provide important information about the underlying molecular mechanisms. Most of current methods formulate module identification as an optimization problem: find the active sub-networks in the genome-wide gene network by maximizing the objective function considering the gene differential expression and/or the gene-gene co-expression information. Here we presented a new formulation of this task: a group of closely-connected and co-expressed DE genes in the gene network are regarded as the signatures of the underlying responsive gene modules; the modules can be identified by finding the signatures and then recovering the "missing parts" by adding the intermediate genes that connect the DE genes in the gene network.</p> <p>Results</p> <p>ClustEx, a two-step method based on the new formulation, was developed and applied to identify the responsive gene modules of human umbilical vein endothelial cells (HUVECs) in inflammation and angiogenesis models by integrating the time-course microarray data and genome-wide PPI data. It shows better performance than several available module identification tools by testing on the reference responsive gene sets. Gene set analysis of KEGG pathways, GO terms and microRNAs (miRNAs) target gene sets further supports the ClustEx predictions.</p> <p>Conclusion</p> <p>Taking the closely-connected and co-expressed DE genes in the condition-specific gene network as the signatures of the underlying responsive gene modules provides a new strategy to solve the module identification problem. The identified responsive gene modules of HUVECs and the corresponding enriched pathways/miRNAs provide useful resources for understanding the inflammatory and angiogenic responses of vascular systems.</p

    TF2Network : predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information

    Get PDF
    A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidop-sis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75-92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response

    Discovering study-specific gene regulatory networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets

    Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes

    Full text link
    Transcriptional interactions in a cell are modulated by a variety of mechanisms that prevent their representation as pure pairwise interactions between a transcription factor and its target(s). These include, among others, transcription factor activation by phosphorylation and acetylation, formation of active complexes with one or more co-factors, and mRNA/protein degradation and stabilization processes. This paper presents a first step towards the systematic, genome-wide computational inference of genes that modulate the interactions of specific transcription factors at the post-transcriptional level. The method uses a statistical test based on changes in the mutual information between a transcription factor and each of its candidate targets, conditional on the expression of a third gene. The approach was first validated on a synthetic network model, and then tested in the context of a mammalian cellular system. By analyzing 254 microarray expression profiles of normal and tumor related human B lymphocytes, we investigated the post transcriptional modulators of the MYC proto-oncogene, an important transcription factor involved in tumorigenesis. Our method discovered a set of 100 putative modulator genes, responsible for modulating 205 regulatory relationships between MYC and its targets. The set is significantly enriched in molecules with function consistent with their activities as modulators of cellular interactions, recapitulates established MYC regulation pathways, and provides a notable repertoire of novel regulators of MYC function. The approach has broad applicability and can be used to discover modulators of any other transcription factor, provided that adequate expression profile data are available.Comment: 15 pages, 3 figures, 2 tables; minor changes following referees' comments; accepted to RECOMB0
    corecore