818 research outputs found

    Polarization and opinion analysis in an online argumentation system for collaborative decision support

    Get PDF
    Argumentation is an important process in a collaborative decision making environment. Argumentation from a large number of stakeholders often produces a large argumentation tree. It is challenging to comprehend such an argumentation tree without intelligent analysis tools. Also, limited decision support is provided for its analysis by the existing argumentation systems. In an argumentation process, stakeholders tend to polarize on their opinions, and form polarization groups. Each group is usually led by a group leader. Polarization groups often overlap and a stakeholder is a member of multiple polarization groups. Identifying polarization groups and quantifying a stakeholder\u27s degree of membership in multiple polarization groups helps the decision maker understand both the social dynamics and the post-decision effects on each group. Frameworks are developed in this dissertation to identify both polarization groups and quantify a stakeholder\u27s degree of membership in multiple polarization groups. These tasks are performed by quantifying opinions of stakeholders using argumentation reduction fuzzy inference system and further clustering opinions based on K-means and Fuzzy c-means algorithms. Assessing the collective opinion of the group on individual arguments is also important. This helps stakeholders understand individual arguments from the collective perspective of the group. A framework is developed to derive the collective assessment score of individual arguments in a tree using the argumentation reduction inference system. Further, these arguments are clustered using argument strength and collective assessment score to identify clusters of arguments with collective support and collective attack. Identifying outlier opinions in an argumentation tree helps in understanding opinions that are further away from the mean group opinion in the opinion space. Outlier opinions may exist from two perspectives in argumentation: individual viewpoint and collective viewpoint of the group. A framework is developed in this dissertation to address this challenge from both perspectives. Evaluation of the methods is also presented and it shows that the proposed methods are effective in identifying polarization groups and outlier opinions. The information produced by these methods help decision makers and stakeholders in making more informed decisions --Abstract, pages iii-iv

    Argumentation Stance Polarity and Intensity Prediction and its Application for Argumentation Polarization Modeling and Diverse Social Connection Recommendation

    Get PDF
    Cyber argumentation platforms implement theoretical argumentation structures that promote higher quality argumentation and allow for informative analysis of the discussions. Dr. Liuโ€™s research group has designed and implemented a unique platform called the Intelligent Cyber Argumentation System (ICAS). ICAS structures its discussions into a weighted cyber argumentation graph, which describes the relationships between the different users, their posts in a discussion, the discussion topic, and the various subtopics in a discussion. This platform is unique as it encodes online discussions into weighted cyber argumentation graphs based on the userโ€™s stances toward one anotherโ€™s arguments and ideas. The resulting weighted cyber argumentation graphs can then be used by various analytical models to measure aspects of the discussion. In prior work, many aspects of cyber argumentation have been modeled and analyzed using these stance relationships. However, many challenging problems remain in cyber argumentation. In this dissertation, I address three of these problems: 1) modeling and measure argumentation polarization in cyber argumentation discussions, 2) encouraging diverse social networks and preventing echo chambers by injecting ideological diversity into social connection recommendations, and 3) developing a predictive model to predict the stance polarity and intensity relationships between posts in online discussions, allowing discussions from outside of the ICAS platform to be encoded as weighted cyber argumentation graphs and be analyzed by the cyber argumentation models. In this dissertation, I present models to measure polarization in online argumentation discussions, prevent polarizing echo-chambers and diversifying usersโ€™ social networks ideologically, and allow online discussions from outside of the ICAS environment to be analyzed using the previous models from this dissertation and the prior work from various researchers on the ICAS system. This work serves to progress the field of cyber argumentation by introducing a new analytical model for measuring argumentation polarization and developing a novel method of encouraging ideological diversity into social connection recommendations. The argumentation polarization model is the first of its kind to look specifically at the polarization among the users contained within a single discussion in cyber argumentation. Likewise, the diversity enhanced social connection recommendation re-ranking method is also the first of its kind to introduce ideological diversity into social connections. The former model will allow stakeholders and moderators to monitor and respond to argumentation polarization detected in online discussions in cyber argumentation. The latter method will help prevent network-level social polarization by encouraging social connections among users who differ in terms of ideological beliefs. This work also serves as an initial step to expanding cyber argumentation research into the broader online deliberation field. The stance polarity and intensity prediction model presented in this dissertation is the first step in allowing discussions from various online platforms to be encoded into weighted cyber argumentation graphs by predicting the stance weights between usersโ€™ posts. These resulting predicted weighted cyber augmentation graphs could then be used to apply cyber argumentation models and methods to these online discussions from popular online discussion platforms, such as Twitter and Reddit, opening many new possibilities for cyber argumentation research in the future

    The Political Communications of Iranian Green Resistance Movement of 2009: A Critical Discourse Analysis

    Get PDF
    In 2009 Iran witnessed the Green Movement, a popular uprising that challenged the status quo of the socio-political structures of the Islamic Republic. In this research, I attempt to develop an understanding of the conditions that contributed to the demise of the movement. This study takes a Critical Theory approach, and the theoretical foundations of this work are the Theory of Structuration of Giddens and the Theory of Communicative Action of Habermas. The data is drawn from YouTube videos and analyzed through Critical Discourse Analysis. This research identifies the key stakeholders of the movement and investigates weather their aspirations regarding the uprising were aligned or stood in contrast. My investigation uncovers evidence of systematic communication distortion in the public discourse of the leaders of the movement which greatly impacted demobilization and led to its failure. The results of my study also disprove the viability of the Reform philosophy as a pragmatic political path to democracy

    ์ธ๊ณต์ง€๋Šฅ๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ: ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒ์šฉ์ž‘์šฉ์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2022.2. ์ด์ค€ํ™˜."์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ"๊ณผ "์‚ฌ์šฉ์ž ๊ฒฝํ—˜"์„ ๋„˜์–ด, "์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ƒํ˜ธ์ž‘์šฉ" ๊ทธ๋ฆฌ๊ณ  "์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฒฝํ—˜"์˜ ์‹œ๋Œ€๊ฐ€ ๋„๋ž˜ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ์šฐ๋ฆฌ๊ฐ€ ์˜์‚ฌ์†Œํ†ตํ•˜๊ณ  ํ˜‘์—…ํ•˜๋Š” ๋ฐฉ์‹์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ „ํ™˜ํ–ˆ๋‹ค. ๊ธฐ๊ณ„ ์—์ด์ „ํŠธ๋Š” ์ธ๊ฐ„ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์—์„œ ์ ๊ทน์ ์ด๋ฉฐ ์ฃผ๋„์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜๊ณผ ํ† ๋ก  ์‹œ์Šคํ…œ ๋””์ž์ธ์— ๋Œ€ํ•œ ์ดํ•ด์™€ ๋…ผ์˜๋Š” ๋ถ€์กฑํ•œ ๊ฒƒ์ด ์‚ฌ์‹ค์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ์˜ ๊ด€์ ์—์„œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” 1) ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์š”์—์„œ ์‚ฌ์šฉ์ž ๊ด€์—ฌ๋ฅผ ๋†’์ด๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ, 2) ์ผ์ƒ์ ์ธ ์†Œ์…œ ๊ทธ๋ฃน ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ์—์ด์ „ํŠธ, 3) ์ˆ™์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์—์ด์ „ํŠธ๋ฅผ ๋””์ž์ธ ๋ฐ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ทธ ํšจ๊ณผ๋ฅผ ์ •๋Ÿ‰์  ๊ทธ๋ฆฌ๊ณ  ์ •์„ฑ์ ์œผ๋กœ ๊ฒ€์ฆํ–ˆ๋‹ค. ์‹œ์Šคํ…œ์„ ๋””์ž์ธํ•จ์— ์žˆ์–ด์„œ ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ๋ฟ ์•„๋‹ˆ๋ผ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ํ•™, ์‹ฌ๋ฆฌํ•™, ๊ทธ๋ฆฌ๊ณ  ๋ฐ์ดํ„ฐ ๊ณผํ•™์„ ์ ‘๋ชฉํ•œ ๋‹คํ•™์ œ์  ์ ‘๊ทผ ๋ฐฉ์‹์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์šฉ ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉ์ž์˜ ๊ด€์—ฌ ์ฆ์ง„์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ–ˆ๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ๋ผ๋Š” ๋งฅ๋ฝ์—์„œ ์ˆ˜ํ–‰๋œ ์ด ์—ฐ๊ตฌ๋Š” ์›น ์„ค๋ฌธ์กฐ์‚ฌ์—์„œ ์‘๋‹ต์ž์˜ ๋ถˆ์„ฑ์‹ค๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์‘๋‹ต ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ธํ„ฐ๋ž™์…˜ ๋ฐฉ๋ฒ•์œผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 2 (์ธํ„ฐํŽ˜์ด์Šค: ์›น ๅฐ ์ฑ—๋ด‡) X 2 (๋Œ€ํ™” ์Šคํƒ€์ผ: ํฌ๋ฉ€ ๅฐ ์บ์ฅฌ์–ผ) ์‹คํ—˜์„ ์ง„ํ–‰ํ–ˆ์œผ๋ฉฐ, ๋งŒ์กฑํ™” ์ด๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‘๋‹ต ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ฑ—๋ด‡ ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๊ฐ€ ์›น ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๋ณด๋‹ค ๋” ๋†’์€ ์ˆ˜์ค€์˜ ๊ด€์—ฌ๋ฅผ ๋ณด์ด๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋” ๋†’์€ ํ’ˆ์งˆ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์ฑ—๋ด‡์˜ ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์— ๋Œ€ํ•œ ํšจ๊ณผ๋Š” ์ฑ—๋ด‡์ด ์นœ๊ตฌ ๊ฐ™๊ณ  ์บ์ฅฌ์–ผํ•œ ๋Œ€ํ™”์ฒด๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋งŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ๋Œ€ํ™”ํ˜• ์ธํ„ฐ๋ž™ํ‹ฐ๋น„ํ‹ฐ๊ฐ€ ์ธํ„ฐํŽ˜์ด์Šค๋ฟ ์•„๋‹ˆ๋ผ ๋Œ€ํ™” ์Šคํƒ€์ผ์ด๋ผ๋Š” ํšจ๊ณผ์ ์ธ ๋ฉ”์„ธ์ง€ ์ „๋žต์„ ๋™๋ฐ˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ์ƒ์ ์ธ ์†Œ์…œ ์ฑ„ํŒ… ๊ทธ๋ฃน์—์„œ ์ง‘๋‹จ์˜ ์˜์‚ฌ๊ฒฐ์ •๊ณผ์ •๊ณผ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด GroupfeedBot์ด๋ผ๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, GroupfeedBot์€ (1) ํ† ๋ก  ์‹œ๊ฐ„์„ ๊ด€๋ฆฌํ•˜๊ณ , (2) ๊ตฌ์„ฑ์›๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋ฉฐ, (3) ๊ตฌ์„ฑ์›๋“ค์˜ ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์š”์•ฝ ๋ฐ ์กฐ์งํ™”ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ํ•ด๋‹น ์—์ด์ „ํŠธ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํƒœ์Šคํฌ (์ถ”๋ก , ์˜์‚ฌ๊ฒฐ์ •, ์ž์œ  ํ† ๋ก , ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ณผ์ œ)์™€ ๊ทธ๋ฃน ๊ทœ๋ชจ(์†Œ๊ทœ๋ชจ, ์ค‘๊ทœ๋ชจ)์— ๊ด€ํ•˜์—ฌ ์‚ฌ์šฉ์ž ์กฐ์‚ฌ๋ฅผ ์‹œํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์˜๊ฒฌ์˜ ๋‹ค์–‘์„ฑ ์ธก๋ฉด์—์„œ GroupfeedBot์œผ๋กœ ํ† ๋ก ํ•œ ์ง‘๋‹จ์ด ๊ธฐ๋ณธ ์—์ด์ „ํŠธ์™€ ํ† ๋ก ํ•œ ์ง‘๋‹จ๋ณด๋‹ค ๋” ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์ƒ์„ฑํ–ˆ์ง€๋งŒ ์‚ฐ์ถœ๋œ ๊ฒฐ๊ณผ์˜ ํ’ˆ์งˆ๊ณผ ๋ฉ”์‹œ์ง€ ์–‘์— ์žˆ์–ด์„œ๋Š” ์ฐจ์ด๊ฐ€ ์—†๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ์— ๋Œ€ํ•œ GroupfeedBot์˜ ํšจ๊ณผ๋Š” ํƒœ์Šคํฌ์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ํŠนํžˆ ์ž์œ  ํ† ๋ก  ๊ณผ์ œ์—์„œ GroupfeedBot์ด ์ฐธ์—ฌ์ž๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ–ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ˆ™์˜ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ DebateBot์€ GroupfeeedBot๊ณผ ๋‹ฌ๋ฆฌ ๋” ์ง„์ง€ํ•œ ์‚ฌํšŒ์  ๋งฅ๋ฝ์—์„œ ์ ์šฉ๋˜์—ˆ๋‹ค. DebateBot์€ (1) ์ƒ๊ฐํ•˜๊ธฐ-์ง์ง“๊ธฐ-๊ณต์œ ํ•˜๊ธฐ (Think-Pair-Share) ์ „๋žต์— ๋”ฐ๋ผ ํ† ๋ก ์„ ๊ตฌ์กฐํ™”ํ•˜๊ณ , (2) ๊ณผ๋ฌตํ•œ ํ† ๋ก ์ž์—๊ฒŒ ์˜๊ฒฌ์„ ์š”์ฒญํ•จ์œผ๋กœ์จ ๋™๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์‚ฌ์šฉ์ž ํ‰๊ฐ€ ๊ฒฐ๊ณผ DebateBot์€ ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์‹ฌ์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. ํ† ๋ก  ๊ตฌ์กฐํ™”๋Š” ํ† ๋ก ์˜ ์งˆ์— ๊ธ์ •์ ์ธ ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜์˜€๊ณ , ์ฐธ์—ฌ์ž ์ด‰์ง„์€ ์ง„์ •ํ•œ ํ•ฉ์˜ ๋„๋‹ฌ์— ๊ธฐ์—ฌํ•˜์˜€์œผ๋ฉฐ, ๊ทธ๋ฃน ๊ตฌ์„ฑ์›๋“ค์˜ ์ฃผ๊ด€์  ๋งŒ์กฑ๋„๋ฅผ ํ–ฅ์ƒํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์‹œ์‚ฌ์ ๋“ค์„ ๋„์ถœํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ TAMED (Task-Agent-Message-Information Exchange-Relationship Dynamics) ๋ชจ๋ธ๋กœ ์ •๋ฆฌํ•˜์˜€๋‹ค.The advancements in technology shift the paradigm of how individuals communicate and collaborate. Machines play an active role in human communication. However, we still lack a generalized understanding of how exactly to design effective machine-driven communication and discussion systems. How should machine agents be designed differently when interacting with a single user as opposed to when interacting with multiple users? How can machine agents be designed to drive user engagement during dyadic interaction? What roles can machine agents perform for the sake of group interaction contexts? How should technology be implemented in support of the group decision-making process and to promote group dynamics? What are the design and technical issues which should be considered for the sake of creating human-centered interactive systems? In this thesis, I present new interactive systems in the form of a conversational agent, or a chatbot, that facilitate dyadic and group interactions. Specifically, I focus on: 1) a conversational agent to engage users in dyadic communication, 2) a chatbot called GroupfeedBot that facilitates daily social group discussion, 3) a chatbot called DebateBot that enables deliberative discussion. My approach to research is multidisciplinary and informed by not only in HCI, but also communication, psychology and data science. In my work, I conduct in-depth qualitative inquiry and quantitative data analysis towards understanding issues that users have with current systems, before developing new computational techniques that meet those user needs. Finally, I design, build, and deploy systems that use these techniques to the public in order to achieve real-world impact and to study their use by different usage contexts. The findings of this thesis are as follows. For a dyadic interaction, participants interacting with a chatbot system were more engaged as compared to those with a static web system. However, the conversational agent leads to better user engagement only when the messages apply a friendly, human-like conversational style. These results imply that the chatbot interface itself is not quite sufficient for the purpose of conveying conversational interactivity. Messages should also be carefully designed to convey such. Unlike dyadic interactions, which focus on message characteristics, other elements of the interaction should be considered when designing agents for group communication. In terms of messages, it is important to synthesize and organize information given that countless messages are exchanged simultaneously. In terms of relationship dynamics, rather than developing a rapport with a single user, it is essential to understand and facilitate the dynamics of the group as a whole. In terms of task performance, technology should support the group's decision-making process by efficiently managing the task execution process. Considering the above characteristics of group interactions, I created the chatbot agents that facilitate group communication in two different contexts and verified their effectiveness. GroupfeedBot was designed and developed with the aim of enhancing group discussion in social chat groups. GroupfeedBot possesses the feature of (1) managing time, (2) encouraging members to participate evenly, and (3) organizing the membersโ€™ diverse opinions. The group which discussed with GroupfeedBot tended to produce more diverse opinions compared to the group discussed with the basic chatbot. Some effects of GroupfeedBot varied by the task's characteristics. GroupfeedBot encouraged the members to contribute evenly to the discussions, especially for the open-debating task. On the other hand, DebateBot was designed and developed to facilitate deliberative discussion. In contrast to GroupfeedBot, DebateBot was applied to more serious and less casual social contexts. Two main features were implemented in DebateBot: (1) structure discussion and (2) request opinions from reticent discussants.This work found that a chatbot agent which structures discussions and promotes even participation can improve discussions, resulting in higher quality deliberative discussion. Overall, adding structure to the discussion positively influenced the discussion quality, and the facilitation helped groups reach a genuine consensus and improved the subjective satisfaction of the group members. The findings of this thesis reflect the importance of understanding human factors in designing AI-infused systems. By understanding the characteristics of individual humans and collective groups, we are able to place humans at the heart of the system and utilize AI technology in a human-friendly way.1. Introduction 1.1 Background 1.2 Rise of Machine Agency 1.3 Theoretical Framework 1.4 Research Goal 1.5 Research Approach 1.6 Summary of Contributions 1.7 Thesis Overview 2. Related Work 2.1 A Brief History of Conversational Agents 2.2 TAMED Framework 3. Designing Conversational Agents for Dyadic Interaction 3.1 Background 3.2 Related Work 3.3 Method 3.4 Results 3.5 Discussion 3.6 Conclusion 4. Designing Conversational Agents for Social Group Discussion 4.1 Background 4.2 Related Work 4.3 Needfinding Survey for Facilitator Chatbot Agent 4.4 GroupfeedBot: A Chatbot Agent For Facilitating Discussion in Group Chats 4.5 Qualitative Study with Small-Sized Group 4.6 User Study With Medium-Sized Group 4.7 Discussion 4.8 Conclusion 5. Designing Conversational Agents for Deliberative Group Discussion 5.1 Background 5.2 Related Work 5.3 DebateBot 5.4 Method 5.5 Results 5.6 Discussion and Design Implications 5.7 Conclusion 6. Discussion 6.1 Designing Conversational Agents as a Communicator 6.2 Design Guidelines Based on TAMED Model 6.3 Technical Considerations 6.4 Human-AI Collaborative System 7. Conclusion 7.1 Research Summary 7.2 Summary of Contributions 7.3 Future Work 7.4 Conclusion๋ฐ•

    Identification of faction groups and leaders in Web-based intelligent argumentation system for collaborative decision support

    No full text
    Argumentation is an important and critical process in a collaborative decision-making environment. Several argumentation frameworks and systems have been proposed for collaborative decision making earlier. However, limited decision support is provided to stakeholders. in an argumentation process, stakeholders tend to form groups, called faction groups based on their opinions and exchange of arguments. Each faction group is usually led by a faction leader in the group. Identification of faction groups and leaders in argumentation becomes an important challenge which has not been addressed adequately in the past. the faction assessment in argumentation provides the decision maker with more information about faction groups and their opinions towards the given issue and it helps the decision maker with logical and analytical competency to assess and analyze post-decision effects on each faction group and faction leaders and make rational decisions. in this paper, we present a framework for identifying faction groups and faction leaders in an argumentation process using the K-means clustering algorithm. It is evaluated using a data set: An argumentation tree developed by a group of 24 stakeholders in an argumentation process using our web-Based intelligent argumentation system for collaborative decision support. the experiment results show that the framework works effectively for faction assessment. ยฉ 2012 IEEE

    Online Deliberation: Design, Research, and Practice

    Get PDF
    Can new technology enhance purpose-driven, democratic dialogue in groups, governments, and societies? Online Deliberation: Design, Research, and Practice is the first book that attempts to sample the full range of work on online deliberation, forging new connections between academic research, technology designers, and practitioners. Since some of the most exciting innovations have occurred outside of traditional institutions, and those involved have often worked in relative isolation from each other, work in this growing field has often failed to reflect the full set of perspectives on online deliberation. This volume is aimed at those working at the crossroads of information/communication technology and social science, and documents early findings in, and perspectives on, this new field by many of its pioneers. CONTENTS: Introduction: The Blossoming Field of Online Deliberation (Todd Davies, pp. 1-19) Part I - Prospects for Online Civic Engagement Chapter 1: Virtual Public Consultation: Prospects for Internet Deliberative Democracy (James S. Fishkin, pp. 23-35) Chapter 2: Citizens Deliberating Online: Theory and Some Evidence (Vincent Price, pp. 37-58) Chapter 3: Can Online Deliberation Improve Politics? Scientific Foundations for Success (Arthur Lupia, pp. 59-69) Chapter 4: Deliberative Democracy, Online Discussion, and Project PICOLA (Public Informed Citizen Online Assembly) (Robert Cavalier with Miso Kim and Zachary Sam Zaiss, pp. 71-79) Part II - Online Dialogue in the Wild Chapter 5: Friends, Foes, and Fringe: Norms and Structure in Political Discussion Networks (John Kelly, Danyel Fisher, and Marc Smith, pp. 83-93) Chapter 6: Searching the Net for Differences of Opinion (Warren Sack, John Kelly, and Michael Dale, pp. 95-104) Chapter 7: Happy Accidents: Deliberation and Online Exposure to Opposing Views (Azi Lev-On and Bernard Manin, pp. 105-122) Chapter 8: Rethinking Local Conversations on the Web (Sameer Ahuja, Manuel Pรฉrez-Quiรฑones, and Andrea Kavanaugh, pp. 123-129) Part III - Online Public Consultation Chapter 9: Deliberation in E-Rulemaking? The Problem of Mass Participation (David Schlosberg, Steve Zavestoski, and Stuart Shulman, pp. 133-148) Chapter 10: Turning GOLD into EPG: Lessons from Low-Tech Democratic Experimentalism for Electronic Rulemaking and Other Ventures in Cyberdemocracy (Peter M. Shane, pp. 149-162) Chapter 11: Baudrillard and the Virtual Cow: Simulation Games and Citizen Participation (Hรฉlรจne Michel and Dominique Kreziak, pp. 163-166) Chapter 12: Using Web-Based Group Support Systems to Enhance Procedural Fairness in Administrative Decision Making in South Africa (Hossana Twinomurinzi and Jackie Phahlamohlaka, pp. 167-169) Chapter 13: Citizen Participation Is Critical: An Example from Sweden (Tomas Ohlin, pp. 171-173) Part IV - Online Deliberation in Organizations Chapter 14: Online Deliberation in the Government of Canada: Organizing the Back Office (Elisabeth Richard, pp. 177-191) Chapter 15: Political Action and Organization Building: An Internet-Based Engagement Model (Mark Cooper, pp. 193-202) Chapter 16: Wiki Collaboration Within Political Parties: Benefits and Challenges (Kate Raynes-Goldie and David Fono, pp. 203-205) Chapter 17: Debianโ€™s Democracy (Gunnar Ristroph, pp. 207-211) Chapter 18: Software Support for Face-to-Face Parliamentary Procedure (Dana Dahlstrom and Bayle Shanks, pp. 213-220) Part V - Online Facilitation Chapter 19: Deliberation on the Net: Lessons from a Field Experiment (June Woong Rhee and Eun-mee Kim, pp. 223-232) Chapter 20: The Role of the Moderator: Problems and Possibilities for Government-Run Online Discussion Forums (Scott Wright, pp. 233-242) Chapter 21: Silencing the Clatter: Removing Anonymity from a Corporate Online Community (Gilly Leshed, pp. 243-251) Chapter 22: Facilitation and Inclusive Deliberation (Matthias Trรฉnel, pp. 253-257) Chapter 23: Rethinking the โ€˜Informedโ€™ Participant: Precautions and Recommendations for the Design of Online Deliberation (Kevin S. Ramsey and Matthew W. Wilson, pp. 259-267) Chapter 24: PerlNomic: Rule Making and Enforcement in Digital Shared Spaces (Mark E. Phair and Adam Bliss, pp. 269-271) Part VI - Design of Deliberation Tools Chapter 25: An Online Environment for Democratic Deliberation: Motivations, Principles, and Design (Todd Davies, Brendan Oโ€™Connor, Alex Cochran, Jonathan J. Effrat, Andrew Parker, Benjamin Newman, and Aaron Tam, pp. 275-292) Chapter 26: Online Civic Deliberation with E-Liberate (Douglas Schuler, pp. 293-302) Chapter 27: Parliament: A Module for Parliamentary Procedure Software (Bayle Shanks and Dana Dahlstrom, pp. 303-307) Chapter 28: Decision Structure: A New Approach to Three Problems in Deliberation (Raymond J. Pingree, pp. 309-316) Chapter 29: Design Requirements of Argument Mapping Software for Teaching Deliberation (Matthew W. Easterday, Jordan S. Kanarek, and Maralee Harrell, pp. 317-323) Chapter 30: Email-Embedded Voting with eVote/Clerk (Marilyn Davis, pp. 325-327) Epilogue: Understanding Diversity in the Field of Online Deliberation (Seeta Peรฑa Gangadharan, pp. 329-358). For individual chapter downloads, go to odbook.stanford.edu

    The Proceedings of the 23rd Annual International Conference on Digital Government Research (DGO2022) Intelligent Technologies, Governments and Citizens June 15-17, 2022

    Get PDF
    The 23rd Annual International Conference on Digital Government Research theme is โ€œIntelligent Technologies, Governments and Citizensโ€. Data and computational algorithms make systems smarter, but should result in smarter government and citizens. Intelligence and smartness affect all kinds of public values - such as fairness, inclusion, equity, transparency, privacy, security, trust, etc., and is not well-understood. These technologies provide immense opportunities and should be used in the light of public values. Society and technology co-evolve and we are looking for new ways to balance between them. Specifically, the conference aims to advance research and practice in this field. The keynotes, presentations, posters and workshops show that the conference theme is very well-chosen and more actual than ever. The challenges posed by new technology have underscored the need to grasp the potential. Digital government brings into focus the realization of public values to improve our society at all levels of government. The conference again shows the importance of the digital government society, which brings together scholars in this field. Dg.o 2022 is fully online and enables to connect to scholars and practitioners around the globe and facilitate global conversations and exchanges via the use of digital technologies. This conference is primarily a live conference for full engagement, keynotes, presentations of research papers, workshops, panels and posters and provides engaging exchange throughout the entire duration of the conference

    Conservative Right-Wing Protest Rhetoric in the Cold War Era of Segregationist Mobilization

    Get PDF
    In the early Cold War decades, the Citizensโ€™ Councils of America (CCA) became the flagship conservative right-wing social movement organization (SMO). As part of its organizational activities, it engaged in a highly sophisticated propaganda effort to mobilize pro-segregationist opinion, merging traditional racist arguments with modern Cold War geopolitics to characterize civil rights activism and federal civil rights reforms as an effort to bring about a tyrannical, Soviet-inspired, dictatorship. Through a content discourse analysis, this research aims to contribute to understanding what factors determine how SMOโ€™s deploy propaganda rhetoric. The main hypothesis is that geopolitical factors, defined here as specific geographic contexts in which sociopolitical issues are situated and from which propaganda rhetoric is deployed, are influential determinants. Since SMO rhetoric reflects its larger ideological orientation, SMO ideology is also influenced by geopolitical factors. For comparative analysis, propaganda literature from the Ku Klux Klan, as well as elite segregationist rhetoric from the same period is included. Relying on frame theory all rhetoric is quantitatively analyzed centering on the question of what factors drive SMO frame messaging. To contribute to frame theory a concept is proposed called frame constellation, which is a web of SMO frame rhetoric and symbolism that functions as an overlapping, intersecting and interrelated system of ideas which revolve around a central intellectual logic for collective action

    Transnational Public Relations in Postcolonial Spaces: Making Space for other Discourses in the Afghan Public Sphere

    Get PDF
    This dissertation takes up Wakefieldโ€™s (1992) call to build theory for international practices of public relations activities. It offers a transnational approach to public relations, providing a theoretical foundation and a case study for the conceptualization of transnational public relations. The theory and practice of transnational public relations proposed in this dissertation incorporates a rhetorical approach that is sensitive to the social, political, cultural, religious and gender issues inherent in postcolonial spaces. Eschewing a rhetorical approach based on civil society discourses or democratic institutional discourses, this project is attentive to listening and responding to a multiplicity of voices in incorporating a culture-centered approach to public relations in postcolonial societies. The theory is rooted in an intersubjective approach that seeks to understand the lived experience of the Other, specifically the realistic situation of the lived experience of marginalized peoples. In particular, this dissertation studies the application of transnational public relations in activist contexts through the case study of a nongovernmental organization working on the ground in postcolonial nations in order to make space for women in the Afghan public sphere. In its activist transnational public relations work, the Women\u27s Islamic Initiative in Spirituality and Equality (WISE) aims to uncover the possibilities of rhetorical interruptions to dominant discourses and hegemonic employment of power in the Afghan public sphere
    • โ€ฆ
    corecore