3 research outputs found

    Analysis of NGS Data from Immune Response and Viral Samples

    Get PDF
    This thesis is devoted to designing and applying advanced algorithmical and statistical tools for analysis of NGS data related to cancer and infection diseases. NGS data under investigation are obtained either from host samples or viral variants. Recently, random peptide phage display libraries (RPPDL) were applied to studies of host\u27s antibody response to different diseases. We study human antibody response to breast cancer and mouse antibody response to Lyme disease by sequencing of the whole antibody repertoire profiles which are represented by RPPDL. Alternatively, instead of sequencing immune response NGS can be applied directly to a viral population within an infected host. Specifically, we analyze the following RNA viruses: the human immunodeficiency virus (HIV) and the infectious bronchitis virus (IBV). Sequencing of RNA viruses is challenging because there are many variants inside population due to high mutation rate. Our results show that NGS helps to understand RNA viruses and explore their interaction with infected hosts. NGS also helps to analyze immune response to different diseases, trace changing of immune response at different disease stages

    Identification of cancer-specific motifs in mimotope profiles of serum antibody repertoire

    No full text
    Abstract Background For fighting cancer, earlier detection is crucial. Circulating auto-antibodies produced by the patient’s own immune system after exposure to cancer proteins are promising bio-markers for the early detection of cancer. Since an antibody recognizes not the whole antigen but 4–7 critical amino acids within the antigenic determinant (epitope), the whole proteome can be represented by a random peptide phage display library. This opens the possibility to develop an early cancer detection test based on a set of peptide sequences identified by comparing cancer patients’ and healthy donors’ global peptide profiles of antibody specificities. Results Due to the enormously large number of peptide sequences contained in global peptide profiles generated by next generation sequencing, the large number of cancer and control sera is required to identify cancer-specific peptides with high degree of statistical significance. To decrease the number of peptides in profiles generated by nextgen sequencing without losing cancer-specific sequences we used for generation of profiles the phage library enriched by panning on the pool of cancer sera. To further decrease the complexity of profiles we used computational methods for transforming a list of peptides constituting the mimotope profiles to the list motifs formed by similar peptide sequences. Conclusion We have shown that the amino-acid order is meaningful in mimotope motifs since they contain significantly more peptides than motifs among peptides where amino-acids are randomly permuted. Also the single sample motifs significantly differ from motifs in peptides drawn from multiple samples. Finally, multiple cancer-specific motifs have been identified
    corecore