17 research outputs found

    Identification of Proteins Secreted by Malaria Parasite into Erythrocyte using SVM and PSSM profiles

    Get PDF
    Background: Malaria parasite secretes various proteins in infected RBC for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine/drug against malaria. The existing motif-based methods have got limited success due to lack of universal motif in all secretory proteins of malaria parasite. Results: In this study a systematic attempt has been made to develop a general method for predicting secretory proteins of malaria parasite. All models were trained and tested on a non-redundant dataset of 252 secretory and 252 non-secretory proteins. We developed SVM models and achieved maximum MCC 0.72 with 85.65% accuracy and MCC 0.74 with 86.45% accuracy using amino acid and dipeptide composition respectively. SVM models were developed using split-amino acid and split-dipeptide composition and achieved maximum MCC 0.74 with 86.40% accuracy and MCC 0.77 with accuracy 88.22% respectively. In this study, for the first time PSSM profiles obtained from PSI-BLAST, have been used for predicting secretory proteins. We achieved maximum MCC 0.86 with 92.66% accuracy using PSSM based SVM model. All models developed in this study were evaluated using 5-fold cross-validation technique. Conclusion: This study demonstrates that secretory proteins have different residue composition than non-secretory proteins. Thus, it is possible to predict secretory proteins from its residue composition-using machine learning technique. The multiple sequence alignment provides more information than sequence itself. Thus performance of method based on PSSM profile is more accurate than method based on sequence composition. A web server PSEApred has been developed for predicting secretory proteins of malaria parasites,the URL can be found in the Availability and requirements section

    Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile

    Get PDF
    The rate of human death due to malaria is increasing day-by-day. Thus the malaria causing parasite Plasmodium falciparum (PF) remains the cause of concern. With the wealth of data now available, it is imperative to understand protein localization in order to gain deeper insight into their functional roles. In this manuscript, an attempt has been made to develop prediction method for the localization of mitochondrial proteins. In this study, we describe a method for predicting mitochondrial proteins of malaria parasite using machine-learning technique. All models were trained and tested on 175 proteins (40 mitochondrial and 135 non-mitochondrial proteins) and evaluated using five-fold cross validation. We developed a Support Vector Machine (SVM) model for predicting mitochondrial proteins of P. falciparum, using amino acids and dipeptides composition and achieved maximum MCC 0.38 and 0.51, respectively. In this study, split amino acid composition (SAAC) is used where composition of N-termini, C-termini, and rest of protein is computed separately. The performance of SVM model improved significantly from MCC 0.38 to 0.73 when SAAC instead of simple amino acid composition was used as input. In addition, SVM model has been developed using composition of PSSM profile with MCC 0.75 and accuracy 91.38%. We achieved maximum MCC 0.81 with accuracy 92% using a hybrid model, which combines PSSM profile and SAAC. When evaluated on an independent dataset our method performs better than existing methods. A web server PFMpred has been developed for predicting mitochondrial proteins of malaria parasites (http://www.imtech.res.in/raghava/pfmpred/)

    Applying Machine Learning to Predict the Exportome of Bovine and Canine Babesia Species That Cause Babesiosis

    Full text link
    Babesia infection of red blood cells can cause a severe disease called babesiosis in susceptible hosts. Bovine babesiosis causes global economic loss to the beef and dairy cattle industries, and canine babesiosis is considered a clinically significant disease. Potential therapeutic targets against bovine and canine babesiosis include members of the exportome, i.e., those proteins exported from the parasite into the host red blood cell. We developed three machine learning-derived methods (two novel and one adapted) to predict for every known Babesia bovis, Babesia bigemina, and Babesia canis protein the probability of being an exportome member. Two well-studied apicomplexan-related species, Plasmodium falciparum and Toxoplasma gondii, with extensive experimental evidence on their exportome or excreted/secreted proteins were used as important benchmarks for the three methods. Based on 10-fold cross validation and multiple train–validation–test splits of training data, we expect that over 90% of the predicted probabilities accurately provide a secretory or non-secretory indicator. Only laboratory testing can verify that predicted high exportome membership probabilities are creditable exportome indicators. However, the presented methods at least provide those proteins most worthy of laboratory validation and will ultimately save time and money.</jats:p

    NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins.</p> <p>Results</p> <p>Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM) and Support Vector Machines (SVMs) with Linear, Polynomial and Gaussian kernel functions. Nested <it>k</it>-fold cross-validation (CV) was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search.</p> <p>Conclusions</p> <p>The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at <url>http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/</url></p

    Analysis and prediction of cancerlectins using evolutionary and domain information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the function of a protein is one of the major challenges in the post-genomic era where a large number of protein sequences of unknown function are accumulating rapidly. Lectins are the proteins that specifically recognize and bind to carbohydrate moieties present on either proteins or lipids. Cancerlectins are those lectins that play various important roles in tumor cell differentiation and metastasis. Although the two types of proteins are linked, still there is no computational method available that can distinguish cancerlectins from the large pool of non-cancerlectins. Hence, it is imperative to develop a method that can distinguish between cancer and non-cancerlectins.</p> <p>Results</p> <p>All the models developed in this study are based on a non-redundant dataset containing 178 cancerlectins and 226 non-cancerlectins in which no two sequences have more than 50% sequence similarity. We have applied the similarity search based technique, i.e. BLAST, and achieved a maximum accuracy of 43.25%. The amino acids compositional analysis have shown that certain residues (e.g. Leucine, Proline) were preferred in cancerlectins whereas some other (e.g. Asparatic acid, Asparagine) were preferred in non-cancerlectins. It has been found that the PROSITE domain "Crystalline beta gamma" was abundant in cancerlectins whereas domains like "SUEL-type lectin domain" were found mainly in non-cancerlectins. An SVM-based model has been developed to differentiate between the cancer and non-cancerlectins which achieved a maximum Matthew's correlation coefficient (MCC) value of 0.32 with an accuracy of 64.84%, using amino acid compositions. We have developed a model based on dipeptide compositions which achieved an MCC value of 0.30 with an accuracy of 64.84%. Thereafter, we have developed models based on split compositions (2 and 4 parts) and achieved an MCC value of 0.31, 0.32 with accuracies of 65.10% and 66.09%, respectively. An SVM model based on Position Specific Scoring Matrix (PSSM), generated by PSI-BLAST, was developed and achieved an MCC value of 0.36 with an accuracy of 68.34%. Finally, we have integrated the PROSITE domain information with PSSM and developed an SVM model that has achieved an MCC value of 0.38 with 69.09% accuracy.</p> <p>Conclusion</p> <p>BLAST has been found inefficient to distinguish between cancer and non-cancerlectins. We analyzed the protein sequences of cancer and non-cancerlectins and identified interesting patterns. We have been able to identify PROSITE domains that are preferred in cancer and non-cancerlectins and thus provided interesting insights into the two types of proteins. The method developed in this study will be useful for researchers studying cancerlectins, lectins and cancer biology. The web-server based on the above study, is available at <url>http://www.imtech.res.in/raghava/cancer_pred/</url></p

    Support Vector Machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins

    Get PDF
    Background: Members of the phylum Proteobacteria are most prominent among bacteria causing plant diseases that result in a diminution of the quantity and quality of food produced by agriculture. To ameliorate these losses, there is a need to identify infections in early stages. Recent developments in next generation nucleic acid sequencing and mass spectrometry open the door to screening plants by the sequences of their macromolecules. Such an approach requires the ability to recognize the organismal origin of unknown DNA or peptide fragments. There are many ways to approach this problem but none have emerged as the best protocol. Here we attempt a systematic way to determine organismal origins of peptides by using a machine learning algorithm. The algorithm that we implement is a Support Vector Machine (SVM).Result: The amino acid compositions of proteobacterial proteins were found to be different from those of plant proteins. We developed an SVM model based on amino acid and dipeptide compositions to distinguish between a proteobacterial protein and a plant protein. The amino acid composition (AAC) based SVM model had an accuracy of 92.44% with 0.85 Matthews correlation coefficient (MCC) while the dipeptide composition (DC) based SVM model had a maximum accuracy of 94.67% and 0.89 MCC. We also developed SVM models based on a hybrid approach (AAC and DC), which gave a maximum accuracy 94.86% and a 0.90 MCC. The models were tested on unseen or untrained datasets to assess their validity.Conclusion: The results indicate that the SVM based on the AAC and DC hybrid approach can be used to distinguish proteobacterial from plant protein sequences.Peer reviewedBiochemistry and Molecular Biolog

    TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

    Get PDF
    Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/

    Parasites, proteomes and systems: has Descartes' clock run out of time?

    Get PDF
    Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types

    Expression and evaluation of a 297-amino acid fragment of the blood stage protein PfC0760c from Plasmodium falciparum.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.Abstract available in pdf
    corecore