2 research outputs found

    Optimal Measurement Policy for Predicting UAV Network Topology

    Full text link
    In recent years, there has been a growing interest in using networks of Unmanned Aerial Vehicles (UAV) that collectively perform complex tasks for diverse applications. An important challenge in realizing UAV networks is the need for a communication platform that accommodates rapid network topology changes. For instance, a timely prediction of network topology changes can reduce communication link loss rate by setting up links with prolonged connectivity. In this work, we develop an optimal tracking policy for each UAV to perceive its surrounding network configuration in order to facilitate more efficient communication protocols. More specifically, we develop an algorithm based on particle swarm optimization and Kalman filtering with intermittent observations to find a set of optimal tracking policies for each UAV under time-varying channel qualities and constrained tracking resources such that the overall network estimation error is minimized.Comment: 5 pages, 5 figures, To appear in Asilomar Conference on Signals, Systems, and Computer

    A Unified Framework for Joint Mobility Prediction and Object Profiling of Drones in UAV Networks

    Full text link
    In recent years, using a network of autonomous and cooperative unmanned aerial vehicles (UAVs) without command and communication from the ground station has become more imperative, in particular in search-and-rescue operations, disaster management, and other applications where human intervention is limited. In such scenarios, UAVs can make more efficient decisions if they acquire more information about the mobility, sensing and actuation capabilities of their neighbor nodes. In this paper, we develop an unsupervised online learning algorithm for joint mobility prediction and object profiling of UAVs to facilitate control and communication protocols. The proposed method not only predicts the future locations of the surrounding flying objects, but also classifies them into different groups with similar levels of maneuverability (e.g. rotatory, and fixed-wing UAVs) without prior knowledge about these classes. This method is flexible in admitting new object types with unknown mobility profiles, thereby applicable to emerging flying Ad-hoc networks with heterogeneous nodes.Comment: 8 pages, 11 figure
    corecore