449,990 research outputs found

    Identifiable reparametrizations of linear compartment models

    Full text link
    Identifiability concerns finding which unknown parameters of a model can be quantified from given input-output data. Many linear ODE models, used in systems biology and pharmacokinetics, are unidentifiable, which means that parameters can take on an infinite number of values and yet yield the same input-output data. We use commutative algebra and graph theory to study a particular class of unidentifiable models and find conditions to obtain identifiable scaling reparametrizations of these models. Our main result is that the existence of an identifiable scaling reparametrization is equivalent to the existence of a scaling reparametrization by monomial functions. We also provide partial results beginning to classify graphs which possess an identifiable scaling reparametrization.Comment: 5 figure

    Determining Structurally Identifiable Parameter Combinations Using Subset Profiling

    Full text link
    Identifiability is a necessary condition for successful parameter estimation of dynamic system models. A major component of identifiability analysis is determining the identifiable parameter combinations, the functional forms for the dependencies between unidentifiable parameters. Identifiable combinations can help in model reparameterization and also in determining which parameters may be experimentally measured to recover model identifiability. Several numerical approaches to determining identifiability of differential equation models have been developed, however the question of determining identifiable combinations remains incompletely addressed. In this paper, we present a new approach which uses parameter subset selection methods based on the Fisher Information Matrix, together with the profile likelihood, to effectively estimate identifiable combinations. We demonstrate this approach on several example models in pharmacokinetics, cellular biology, and physiology

    A Note on the Identifiability of Generalized Linear Mixed Models

    Full text link
    I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization.Comment: 9 pages, no figure

    Identifiability and Unmixing of Latent Parse Trees

    Full text link
    This paper explores unsupervised learning of parsing models along two directions. First, which models are identifiable from infinite data? We use a general technique for numerically checking identifiability based on the rank of a Jacobian matrix, and apply it to several standard constituency and dependency parsing models. Second, for identifiable models, how do we estimate the parameters efficiently? EM suffers from local optima, while recent work using spectral methods cannot be directly applied since the topology of the parse tree varies across sentences. We develop a strategy, unmixing, which deals with this additional complexity for restricted classes of parsing models

    Identifiability of Large Phylogenetic Mixture Models

    Full text link
    Phylogenetic mixture models are statistical models of character evolution allowing for heterogeneity. Each of the classes in some unknown partition of the characters may evolve by different processes, or even along different trees. The fundamental question of whether parameters of such a model are identifiable is difficult to address, due to the complexity of the parameterization. We analyze mixture models on large trees, with many mixture components, showing that both numerical and tree parameters are indeed identifiable in these models when all trees are the same. We also explore the extent to which our algebraic techniques can be employed to extend the result to mixtures on different trees.Comment: 15 page
    corecore