343 research outputs found

    Idempotent generated algebras and Boolean powers of commutative rings

    Full text link
    A Boolean power S of a commutative ring R has the structure of a commutative R-algebra, and with respect to this structure, each element of S can be written uniquely as an R-linear combination of orthogonal idempotents so that the sum of the idempotents is 1 and their coefficients are distinct. In order to formalize this decomposition property, we introduce the concept of a Specker R-algebra, and we prove that the Boolean powers of R are up to isomorphism precisely the Specker R-algebras. We also show that these algebras are characterized in terms of a functorial construction having roots in the work of Bergman and Rota. When R is indecomposable, we prove that S is a Specker R-algebra iff S is a projective R-module, thus strengthening a theorem of Bergman, and when R is a domain, we show that S is a Specker R-algebra iff S is a torsion-free R-module. For an indecomposable R, we prove that the category of Specker R-algebras is equivalent to the category of Boolean algebras, and hence is dually equivalent to the category of Stone spaces. In addition, when R is a domain, we show that the category of Baer Specker R-algebras is equivalent to the category of complete Boolean algebras, and hence is dually equivalent to the category of extremally disconnected compact Hausdorff spaces. For a totally ordered R, we prove that there is a unique partial order on a Specker R-algebra S for which it is an f-algebra over R, and show that S is equivalent to the R-algebra of piecewise constant continuous functions from a Stone space X to R equipped with the interval topology.Comment: 18 page

    Vertex rings and their Pierce bundles

    Full text link
    In part I we introduce vertex rings, which bear the same relation to vertex algebras (or VOAs) as commutative, associative rings do to commutative, associative algebras over the complex numbers. We show that vertex rings are characterized by Goddard axioms. These include a generalization of the translation-covariance axiom of VOA theory that involves a canonical Hasse-Schmidt derivation naturally associated to any vertex ring. We give several illustrative applications of these axioms, including the construction of vertex rings associated with the Virasoro algebra. We consider some categories of vertex rings, and the role played by the center of a vertex ring. In part II we extend the theory of Pierce bundles associated to a commutative ring to the setting of vertex rings. This amounts to the construction of certain reduced etale bundles of vertex rings functorially associated to a vertex ring. We introduce von Neumann regular vertex rings as a generalization of von Neumann regular commutative rings; we obtain a characterization of this class of vertex rings as those whose Pierce bundles are bundles of simple vertex rings

    Representation theories of some towers of algebras related to the symmetric groups and their Hecke algebras

    Full text link
    We study the representation theory of three towers of algebras which are related to the symmetric groups and their Hecke algebras. The first one is constructed as the algebras generated simultaneously by the elementary transpositions and the elementary sorting operators acting on permutations. The two others are the monoid algebras of nondecreasing functions and nondecreasing parking functions. For these three towers, we describe the structure of simple and indecomposable projective modules, together with the Cartan map. The Grothendieck algebras and coalgebras given respectively by the induction product and the restriction coproduct are also given explicitly. This yields some new interpretations of the classical bases of quasi-symmetric and noncommutative symmetric functions as well as some new bases.Comment: 12 pages. Presented at FPSAC'06 San-Diego, June 2006 (minor explanation improvements w.r.t. the previous version

    De Vries powers: a generalization of Boolean powers for compact Hausdorff spaces

    Full text link
    We generalize the Boolean power construction to the setting of compact Hausdorff spaces. This is done by replacing Boolean algebras with de Vries algebras (complete Boolean algebras enriched with proximity) and Stone duality with de Vries duality. For a compact Hausdorff space XX and a totally ordered algebra AA, we introduce the concept of a finitely valued normal function f:X→Af:X\to A. We show that the operations of AA lift to the set FN(X,A)FN(X,A) of all finitely valued normal functions, and that there is a canonical proximity relation ≺\prec on FN(X,A)FN(X,A). This gives rise to the de Vries power construction, which when restricted to Stone spaces, yields the Boolean power construction. We prove that de Vries powers of a totally ordered integral domain AA are axiomatized as proximity Baer Specker AA-algebras, those pairs (S,≺)(S,\prec), where SS is a torsion-free AA-algebra generated by its idempotents that is a Baer ring, and ≺\prec is a proximity relation on SS. We introduce the category of proximity Baer Specker AA-algebras and proximity morphisms between them, and prove that this category is dually equivalent to the category of compact Hausdorff spaces and continuous maps. This provides an analogue of de Vries duality for proximity Baer Specker AA-algebras.Comment: 34 page

    Zero-product balanced algebras

    Get PDF
    We say that an algebra is zero-product balanced if ab⊗c and a⊗bc agree modulo tensors of elements with zero-product. This is closely related to but more general than the notion of a zero-product determined algebra introduced and developed by Brešar, Villena and others. Every surjective, zero-product preserving map from a zero-product balanced algebra is automatically a weighted epimorphism, and this implies that zero-product balanced algebras are determined by their linear and zero-product structure. Further, the commutator subspace of a zero-product balanced algebra can be described in terms of square-zero elements. We show that a commutative, reduced algebra is zero-product balanced if and only if it is generated by idempotents. It follows that every commutative, zero-product balanced algebra is spanned by nilpotent and idempotent elements

    M\"obius Functions and Semigroup Representation Theory II: Character formulas and multiplicities

    Full text link
    We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota's theory of M\"obius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete description of the spectra of random walks on finite semigroups admitting a faithful representation by upper triangular matrices over the complex numbers. These include the random walks on chambers of hyperplane arrangements studied by Bidigare, Hanlon, Rockmere, Brown and Diaconis. Applications are also given to decomposing tensor powers and exterior products of rook matrix representations of inverse semigroups, generalizing and simplifying earlier results of Solomon for the rook monoid.Comment: Some minor typos corrected and references update
    • …
    corecore