9,080 research outputs found

    Can ideals without ccc be interesting?

    Get PDF
    AbstractWe study those ideals I of sets in a perfect Polish space X which admit a Borel measurable f: X→X with f-1[\s{x\s}]∉I for each xϵX. A stronger version of that property (when, additionally, X is a group and I an invariant ideal) states that there exist a Borel set B∉I and a perfect P⊆X, such that \s{B + x:x ϵP\s} forms a disjoint family

    Rothberger gaps in fragmented ideals

    Full text link
    The~\emph{Rothberger number} b(I)\mathfrak{b} (\mathcal{I}) of a definable ideal I\mathcal{I} on ω\omega is the least cardinal κ\kappa such that there exists a Rothberger gap of type (ω,κ)(\omega,\kappa) in the quotient algebra P(ω)/I\mathcal{P} (\omega) / \mathcal{I}. We investigate b(I)\mathfrak{b} (\mathcal{I}) for a subclass of the FσF_\sigma ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ1\aleph_1 while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum many) different Rothberger numbers associated with fragmented ideals.Comment: 28 page

    Lebesgue's Density Theorem and definable selectors for ideals

    Full text link
    We introduce a notion of density point and prove results analogous to Lebesgue's density theorem for various well-known ideals on Cantor space and Baire space. In fact, we isolate a class of ideals for which our results hold. In contrast to these results, we show that there is no reasonably definable selector that chooses representatives for the equivalence relation on the Borel sets of having countable symmetric difference. In other words, there is no notion of density which makes the ideal of countable sets satisfy an analogue to the density theorem. The proofs of the positive results use only elementary combinatorics of trees, while the negative results rely on forcing arguments.Comment: 28 pages; minor corrections and a new introductio
    • …
    corecore