3 research outputs found

    A Deep Generative Model for Interactive Data Annotation through Direct Manipulation in Latent Space

    Full text link
    The impact of machine learning (ML) in many fields of application is constrained by lack of annotated data. Among existing tools for ML-assisted data annotation, one little explored tool type relies on an analogy between the coordinates of a graphical user interface and the latent space of a neural network for interaction through direct manipulation. In the present work, we 1) expand the paradigm by proposing two new analogies: time and force as reflecting iterations and gradients of network training; 2) propose a network model for learning a compact graphical representation of the data that takes into account both its internal structure and user provided annotations; and 3) investigate the impact of model hyperparameters on the learned graphical representations of the data, identifying candidate model variants for a future user study

    A Virtual Reality Tool for Representing, Visualizing and Updating Deep Learning Models

    Full text link
    Deep learning is ubiquitous, but its lack of transparency limits its impact on several potential application areas. We demonstrate a virtual reality tool for automating the process of assigning data inputs to different categories. A dataset is represented as a cloud of points in virtual space. The user explores the cloud through movement and uses hand gestures to categorise portions of the cloud. This triggers gradual movements in the cloud: points of the same category are attracted to each other, different groups are pushed apart, while points are globally distributed in a way that utilises the entire space. The space, time, and forces observed in virtual reality can be mapped to well-defined machine learning concepts, namely the latent space, the training epochs and the backpropagation. Our tool illustrates how the inner workings of deep neural networks can be made tangible and transparent. We expect this approach to accelerate the autonomous development of deep learning applications by end users in novel areas

    Interface Tailoring by Exploiting Temporality of Attributes for Small Screens

    Full text link
    corecore