152,237 research outputs found

    A regulation-based classification system for marine protected areas: A response to Dudley et al. [9]

    Get PDF
    Dudley et al. [9] commented on our paper [11], arguing that the current IUCN objective-based categorization of protected areas, which is also used in marine protected areas (MPAs), should not be abandoned and replaced by the new regulation-based classification system [11]. Here we clarify that we do not advocate replacing the current IUCN categories, but highlight the benefits of using both the objective-based IUCN categories and the new regulation-based classification when applied to MPAs. With an increasing number of MPA types being implemented, most of them multiple-use areas zoned for various purposes, assessing ecological and socio-economic benefits is key for advancing conservation targets and policy objectives. Although the IUCN categories can be used both in terrestrial and marine systems, they were not designed to follow a gradient of impacts and there is often a mismatch between stated objectives and implemented regulations. The new regulation-based classification system addresses these problems by linking impacts of activities in marine systems with MPA and zone classes in a simple and globally applicable way. Applying both the IUCN categories and the regulation based classes will increase transparency when assessing marine conservation goals.ERA-Net BiodivERsA project "BUFFER Partially protected areas as buffers to increase the linked social ecological resilience"; national funders ANR (France); FCT (Portugal); FOR-MAS (Sweden); SEPA (Sweden); RCN (Norway); project BUFFER; Fernand Braudel IFER fellowship (Fondation Maison des Sciences de l'Homme); Fundacao para a Ciencia e a Tecnologia (FCT) [UID/MAR/04292/2013

    The natural distribution and ecology of Blandfordia cunninghamii (Blandfordiaceae)

    Get PDF
    A survey covering almost all known sites and most areas of potential habitat of the rare plant Blandfordia cunninghamii (family Blandfordiaceae) in 2004 recorded over 4000 plants from 27 locations, with 80% of the plants in the upper Blue Mountains west of Sydney (lat 33° 40' S, long 150° 20' E), and the remainder as a disjunct occurrence on Mount Kembla in the Illawarra. Habitat requirements of Blandfordia cunninghamii were found to be southern aspect (SE to SW), a slope of > 30°, high rainfall (>1200 mm a year), good drainage, partial canopy cover (30-50%), and acid clayey sands with a pH of 4.5-5, at an altitude between 500 and 950 m. Using International Union for Conservation of Nature (IUCN) parameters, we consider that the number of plants (less than 10 000), their Extent of Occurrence (940 square km), Area of Occupancy (80 km2) are below the threshold for Vulnerable. There is observed decline in habitat and numbers and we conclude that there may be less than 10 locations (under IUCN definitions). This would mean that the species could be considered Vulnerable under IUCN Criteria

    The IUCN Red List of Ecosystems: motivations, challenges, and applications

    Get PDF
    Abstract In response to growing demand for ecosystem-level risk assessment in biodiversity conservation, and rapid proliferation of locally tailored protocols, the IUCN recently endorsed new Red List criteria as a global standard for ecosystem risk assessment. Four qualities were sought in the design of the IUCN criteria: generality; precision; realism; and simplicity. Drawing from extensive global consultation, we explore trade-offs among these qualities when dealing with key challenges, including ecosystem classification, measuring ecosystem dynamics, degradation and collapse, and setting decision thresholds to delimit ordinal categories of threat. Experience from countries with national lists of threatened ecosystems demonstrates well-balanced trade-offs in current and potential applications of Red Lists of Ecosystems in legislation, policy, environmental management and education. The IUCN Red List of Ecosystems should be judged by whether it achieves conservation ends and improves natural resource management, whether its limitations are outweighed by its benefits, and whether it performs better than alternative methods. Future development of the Red List of Ecosystems will benefit from the history of the Red List of Threatened Species which was trialed and adjusted iteratively over 50 years from rudimentary beginnings. We anticipate the Red List of Ecosystems will promote policy focus on conservation outcomes in situ across whole landscapes and seascapes

    On the distribution, ecology and conservation status of three rare plant taxa Zygophyllum compressum, Elachanthus glaber and Eremophila crassifolia in southwestern New South Wales

    Get PDF
    The arid and semi-arid southwest of New South Wales has received disproportionately less attention from botanists than other similar-sized geographic regions of the state. Recent work has extended our knowledge of three extremely rare plant taxa from this part of the state. Zygophyllum compressum (Zygophyllaceae) and Elachanthus glaber (Asteraceae) are restricted to gypseous rises within active saline groundwater discharge complexes with limited distribution in southwest New South Wales and occur within the plant community “Gypseous shrubland on rises and semi-arid plains” (ID253) which is listed as threatened (vulnerable) within the state. Eremophila crassifolia (Myoporaceae) is restricted to a few plants on a roadside and adjacent mallee vegetation approximately 35 km east of Wentworth. Based on IUCN criteria it is suggested that Eremophila crassifolia is critically endangered and Zygophyllum compressum and Elachanthus glaber endangered in New South Wales and all should be listed under the NSW Threatened Species Conservation Act 1995

    Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales

    Get PDF
    Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation significance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of significant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classification, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp. ‘Howes Swamp Creek’ (Doherty 26), known from a single location within the park, and Pultenaea sp. (Olinda) from Dunns Swamp – both these species remain undescribed, but are listed as endangered species. After applying IUCN criteria to the 94 taxa, 2 are considered Critically Endangered; 11 are considered Endangered; 23 are considered Vulnerable; 3 are considered Near Threatened; 19 are considered Data Deficient; and 36 are considered of Least Concern. It is likely that additional highly restricted plant taxa await discovery in remote locations

    A global map to aid the identification and screening of critical habitat for marine industries

    Get PDF
    Marine industries face a number of risks that necessitate careful analysis prior to making decisions on the siting of operations and facilities. An important emerging regulatory framework on environmental sustainability for business operations is the International Finance Corporation’s Performance Standard 6 (IFC PS6). Within PS6, identification of biodiversity significance is articulated through the concept of “Critical Habitat”, a definition developed by the IFC and detailed through criteria aligned with those that support internationally accepted biodiversity designations. No publicly available tools have been developed in either the marine or terrestrial realm to assess the likelihood of sites or operations being located within PS6-defined Critical Habitat. This paper presents a starting point towards filling this gap in the form of a preliminary global map that classifies more than 13 million km2 of marine and coastal areas of importance for biodiversity (protected areas, Key Biodiversity Areas [KBA], sea turtle nesting sites, cold- and warm-water corals, seamounts, seagrass beds, mangroves, saltmarshes, hydrothermal vents and cold seeps) based on their overlap with Critical Habitat criteria, as defined by IFC. In total, 5798×103 km2 (1.6%) of the analysis area (global ocean plus coastal land strip) were classed as Likely Critical Habitat, and 7526×103 km2 (2.1%) as Potential Critical Habitat; the remainder (96.3%) were Unclassified. The latter was primarily due to the paucity of biodiversity data in marine areas beyond national jurisdiction and/or in deep waters, and the comparatively fewer protected areas and KBAs in these regions. Globally, protected areas constituted 65.9% of the combined Likely and Potential Critical Habitat extent, and KBAs 29.3%, not accounting for the overlap between these two features. Relative Critical Habitat extent in Exclusive Economic Zones varied dramatically between countries. This work is likely to be of particular use for industries operating in the marine and coastal realms as an early screening aid prior to in situ Critical Habitat assessment; to financial institutions making investment decisions; and to those wishing to implement good practice policies relevant to biodiversity management. Supplementary material (available online) includes other global datasets considered, documentation and justification of biodiversity feature classification, detail of IFC PS6 criteria/scenarios, and coverage calculations

    Conservation of amphibians and reptiles in Indonesia: issues and problems

    Get PDF
    Indonesia is an archipelagic nation comprising some 17,000 islands of varying sizes and geological origins, as well as marked differences in composition of their floras and faunas. Indonesia is considered one of the megadiversity centers, both in terms of species numbers as well as endemism. According to the Biodiversity Action Plan for Indonesia, 16% of all amphibian and reptile species occur in Indonesia, a total of over 1,100 species. New research activities, launched in the last few years, indicate that these figures may be significantly higher than generally assumed. Indonesia is suspected to host the worldwide highest numbers of amphibian and reptile species. Herpetological research in Indonesia, however, has not progressed at a rate comparable to that of neighboring countries. As a result, the ratio of Indonesian species to the entirety of Southeast Asian and Malesian species has “declined” from about 60% in 1930 to about 50% in 2000, essentially a result of more taxa having been described from areas outside Indonesia. Many of these taxa were subsequently also found in Indonesia. In the last 70 years, 762 new taxa have been described from the Southeast Asia region of which only 262 were from Indonesia. In general, the herpetofauna of Indonesia is poorly understood compared to the herpetofauna of neighboring countries. This refers not only to the taxonomic status, but also to the basic biological and ecological characteristics of most of the species. Moreover, geographic distribution patterns for many species are only poorly known. In view of the alarming rate of forest loss, measures for more effective protection of the herpetofauna of Indonesia are urgently required. The status of virtually all of the Indonesian species, e.g. in terms of IUCN categories, remains unknown, and no action plans have been formulated to date. In addition, research results on Indonesia’s amphibian and reptile fauna have often not been made available in the country itself. Finally, there is a clear need to organize research activities in such a way that a larger segment of the Indonesian population becomes aware of the importance of the herpetofauna as an essential component of the country’s biodiversity. To address these issues, this paper (1) gives an overview of the herpetofauna as part of Indonesia’s biodiversity, (2) outlines the history of herpetological research in the region, (3) identifies major gaps in our knowledge of the Indonesian herpetofauna, and (4) uses this framework for discussing issues and problems of the conservation of amphibians and reptiles in Indonesia. In particular, the contents and shortcomings of compilations of lists of protected or threatened species by national and international authorities are discussed, major threats to the Indonesian herpetofauna or certain components thereof are described, and a set of measures for better longterm conservation is proposed.Abstrak.—Indonesia adalah suatu negara kepulauan yang terdiri dari sekitar 17.000 pulau dengan ukuran bervariasi dan mempunyai asal usul geologi yang kompleks seperti yang terlihat dalam komposisi tumbuhan dan hewannya. Indonesia, sebagai salah satu pusat keanekaragaman yang terbesar di dunia, baik dari segikekayaan alam jenisnya maupun dari segi tingkat endemisitasnya. Menurut Biodiversity Action Plan for Indonesia, 16% dari amfibi dan reptil dunia terdapat di sini, dengan jumlah lebih dari 1100 jenis. Kegiatan penelitian yang dilaksanakan pada masa yang baru lalu menunjukkan bahwa jumlah tersebut di atas masih jauh di bawah keadaan yang sebenarnya. Indonesia mungkin sekali sebuah negara yang mempunyai jumlah amfibi dan reptil terbesar di dunia. Yang patut menjadi pertimbangan ialah bahwa penelitian amfibi dan reptil di Indonesia jauh lebih lambat di bandingkan dengan kemajuan di negara tetangga. Sebagai gambaran, jumlah jenis di Indonesia apabila dibandingkan dengan jumlah jenis di seluruh Asia Tenggara dalam kurun waktu 70 tahun telah merosot dari 60% menjadi 50%. Hal ini terjadi karena jumlah taksa baru kebanyakan ditemukan di luar Indonesia. Banyak diantara jenis-jenis tersebut kemudian ditemukan di Indonesia. Dalam 70 tahun terakhir, 762 jenis taksa dipertelakan dari luar Indonesia dan hanya 262 pertelaan dari Indonesia. Pada umumnya herpetofauna Indonesia tidak banyak dikenal, baik dari segi taksonomi, ciri-ciri biologi maupun ciri-ciri ekologinya. Daerah penyebaran suatu jenis sangat sedikit diketahui. Meninjau dari cepatnya penebangan dan pengalihan fungsi hutan, usaha untuk melindungi komponen biologi (dalam hal ini amfibi dan reptil) sangat diperlukan. Hampir semua status perlindungan baik secara nasional maupun dengan mengikuti kategori IUCN atau CITES tidak banyak diketahui atau dipahami. Kebanyakan informasi mengenai organisme Indonesia sulit diperoleh di dalam eri. Sebagai akibat, maka diperlukan suatu mekanisme untuk mengatur kegiatan penelitian sedemikian rupa sehingga timbul kesadaran bahwa amfibi dan reptil merupakan salah satu komponen yang sangat berharga dari kekayaan keaneka-ragaman Indonesia. Makalah ini memberikan (1) gambaran komponen biodiversitas herpetofauna Indonesia, (2) memaparkan sejarah perkembangan herpetologi di Indonesia, (3) mengidentifikasi kekosongan dalam pengetahuan herpetologi di Indonesia, (4) memaparkan masalah dan jalan keluar dalam konseravsi keanekaragaman herpetofauna Indonesia. Daftar herpetofauna Indonesia yang dilindungi undang-undang, CITES dan IUCN dibahas, hewanhewan yang mulai terancam dan kiat untuk melindunginya dibahas

    Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    Get PDF
    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species’ evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (“MammalDIET”). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external validation showed that: (1) extrapolations were most reliable for primary food items; (2) several diet categories (“Animal”, “Mammal”, “Invertebrate”, “Plant”, “Seed”, “Fruit”, and “Leaf”) had high proportions of correctly predicted diet ranks; and (3) the potential of correctly extrapolating specific diet categories varied both within and among clades. Global maps of species richness and proportion showed congruence among trophic levels, but also substantial discrepancies between dietary guilds. MammalDIET provides a comprehensive, unique and freely available dataset on diet preferences for all terrestrial mammals worldwide. It enables broad-scale analyses for specific trophic levels and dietary guilds, and a first assessment of trait conservatism in mammalian diet preferences at a global scale. The digitalization, extrapolation and validation procedures could be transferable to other trait data and taxa

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpredefinedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants

    Get PDF
    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed
    corecore