165,683 research outputs found

    The remote exercise monitoring trial for exercise-based cardiac rehabilitation (REMOTE-CR): a randomised controlled trial protocol

    Full text link
    BACKGROUND: Exercise is an essential component of contemporary cardiac rehabilitation programs for the secondary prevention of coronary heart disease. Despite the benefits associated with regular exercise, adherence with supervised exercise-based cardiac rehabilitation remains low. Increasingly powerful mobile technologies, such as smartphones and wireless physiological sensors, may extend the capability of exercise-based cardiac rehabilitation by enabling real-time exercise monitoring for those with coronary heart disease. This study compares the effectiveness of technology-assisted, home-based, remote monitored exercise-based cardiac rehabilitation (REMOTE) to standard supervised exercise-based cardiac rehabilitation in New Zealand adults with a diagnosis of coronary heart disease. METHODS/DESIGN: A two-arm, parallel, non-inferiority, randomised controlled trial will be conducted at two sites in New Zealand. One hundred and sixty two participants will be randomised at a 1:1 ratio to receive a 12-week program of technology-assisted, home-based, remote monitored exercise-based cardiac rehabilitation (intervention), or an 8-12 program of standard supervised exercise-based cardiac rehabilitation (control).The primary outcome is post-treatment maximal oxygen uptake (V̇O2max). Secondary outcomes include cardiovascular risk factors (blood lipid and glucose concentrations, blood pressure, anthropometry), self-efficacy, intentions and motivation to be active, objectively measured physical activity, self-reported leisure time exercise and health-related quality of life. Cost information will also be collected to compare the two modes of delivery. All outcomes are assessed at baseline, post-treatment, and 6 months, except for V̇O2max, blood lipid and glucose concentrations, which are assessed at baseline and post-treatment only. DISCUSSION: This novel study will compare the effectiveness of technology-supported exercise-based cardiac rehabilitation to a traditional supervised approach. If the REMOTE program proves to be as effective as traditional cardiac rehabilitation, it has potential to augment current practice by increasing access for those who cannot utilise existing services. <br /

    Technology use among patients with cardiovascular disease: an assessment of patient need for a technology enabled behavioural change intervention.

    Get PDF
    Effective Cardiac Rehabilitation (CR) can significantly improve mortality and morbidity rates in relation to cardiovascular disease; however, uptake of traditional community-based long-term is very low. PATHway (Physical Activity Towards Health) will provide individualized rehabilitation programs, through an internet-enabled sensor-based home exercise platform that allows remote participation. The purpose of this study was to assess the level of interest and use of technology by individuals living with CVD in order to inform the design of a technology-enabled CR programme. Method: A technology usage questionnaire based on a previous study investigating the role of technology and mHealth in a CVD population was used (Dale et al., 2014) to ascertain the current level of technology use. All patients attending the Phase Four community cardiac rehabilitation HeartSmart programme (MedEx) were recruited (N=67; 66.2 years, SD= 8.55, Males =76.1%, Females=20.9%). Results: Technology usage was high with 60% of participants owning a smartphone and 85% accessing the internet (54% of whom access it everyday). Participants endorsed the idea of technology enabled cardiac rehabilitation, indicating that they found the idea ‘ appealing’. 79% were interested in receiving ongoing CR support via their smartphones, 79% were interested in receiving CR via the internet. It was found that 52% of patients found the idea of a virtual rehabilitation class appealing. Conclusion: This study provides support for the patient need for a technology enabled behavioural change intervention, specifically through the provision of an internet-enabled sensor-based home exercise platform that allows remote participation in CR exercise programs

    Serious Games for Post-Stroke Rehabilitation Using Microsoft Kinect

    Get PDF
    Traditional rehabilitation is a tedious task which typically reduces the patient’s motivation to perform rehabilitation exercises. Patients therefore need a program that can entice them to do rehabilitation exercises continuously. The proposed game includes two different types of game and three different types of movement for interacting with the game. The game was designed and developed based on the elements of a rehabilitation game and the types of movement in rehabilitation exercises. The interface was developed with the aim of increasing the motivation of players, and the design was based on an analysis of the technology constraints faced by post-stroke patients. Since these patients experience physical limitations, Microsoft Kinect was used for interaction in this game. Using Kinect, the patient is not bound by the controller to interact with the game.  Therefore, rehabilitation exercise games that support multi-player will provide a higher motivation than the single-player. Since most stroke patients suffer from cognitive impairment, cognitive challenge levels are also the key factors in the design of the game so that it does not become an obstacle for the recovery process.  This research develops a prototype of a rehabilitation exercise game that contains aspects of the social context, the type of movement and cognitive challenges. It also provides usability in game design, according to a post-stroke stage so that they can perform recovery activities based on their ability. In addition, this study highlights technology and rehabilitation exercise games in Malaysia.The game also adds a social context that gives patients the opportunity to have a friend to play either by competition or cooperation. The contribution of this research is to measure the effectiveness of Microsoft's Kinect game console and this game can help in recovery the post-stroke patients do additional exercises at home without the supervision of therapist

    Medical Rehabilitation Robotics

    Get PDF
    Robotic Rehabilitation is a novel field of bio engineering combining precise mechanical design with control technology through the interaction of Medical and Engineering professionals to produce a new tool in medical rehabilitation. Paralysis is one of the common symptoms of a stroke sufferer; a medical condition causing weakness in one side of the body. It is treatable with a course of physiotherapy and Interactive Robotics can greatly accelerate this recovery. Although Robotic Rehabilitation is a relatively new technology its benefits are well recognized. The objective of this research work was to develop an interactive robot for the medical rehabilitation of stroke victims. This interactive robot reduces labour intensive procedures, accelerate rehabilitation and provide a valuable aid for rehabilitation therapists. At present, a typical rehabilitation session for a patient suffering from paralysis requires a therapist to execute exercises involving hand on hand interaction. The therapist takes the patients hand and guides him/her through the exercise. Such exercises require circular or diagonal movement, arm extension, retraction and hand movement. Figure1. shows a typical exercise path movement for the right arm. Green diagonal lines show the elbow motion and yellow, the shoulder motion. The blue circle and square show how both elbow and shoulder regions can be combined in some exercises. The interactive robot design developed allows the patient to carry out such exercises without assistance of a therapist. Different exercise paths and degrees of difficulty can be selected from a menu and exercises can be carried out at any time in any suitable location or at home

    Augmented Reality based Illusion System with biofeedback

    Full text link
    This paper presents the Augmented Reality based Illusion System (ARIS) with biofeedback for upper limb rehabilitation. It aims for fast recovery of motor deficit with motivational approach over traditional upper limb rehabilitation methods. The system incorporates with Augmented Reality (AR) technology to develop upper limb rehabilitation exercise and computer vision with color recognition technique to create 'Fool-the-Brain' concept for fast recovery of neural impairment due to various motor injuries. The rehabilitation exercise in ARIS is aiming to increase the shoulder joint range of motions by performing reaching movements and to strengthen the associated muscles. 'Fool-the-Brain' concept is introduced during performing rehabilitation exercise to perceive artificial visual feedback where user's real impaired arm is covered by Virtual Arm (VA). When the real arm cannot perform the required task, VA will take over the job of real one and will make the user perceives the sense that is still be able to accomplish the task with own effort. Evaluation has performed and results indicate that ARIS with biofeedback is a potential upper limb rehabilitation system for people with upper limb motor deficit. © 2014 IEEE

    Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Underactuated Rehabilitation Robotics for Hand Function

    Get PDF
    Normal hand function plays an important role in daily life. At present, the incidence of hand dysfunction caused by diseases such as cerebral palsy or stroke is increasing year by year. For the rehabilitation of hand dysfunction, in addition to surgical treatment, effective rehabilitation exercise is also particularly important. It is also a necessary link in the efficient and intelligent development of rehabilitation medicine to develop robots that can effectively help patients with rehabilitation hand functions.In this paper, based on the analysis of the design principles and objectives of the rehabilitation robot with hand function, the kinematics model of the rehabilitation robot with hand function is constructed,based on top-down principle in the design of the machine, the design of the machine hand function rehabilitation robots design optimization process framework, and based on the kinematics model and the virtual prototype technology, build its skeleton model, and carries on the kinematics simulation analysis, the design is verified the correctness of the hand function rehabilitation robot kinematics model

    Connective Adaptive Resistance Exercise (CARE) machines for accentuated eccentric and eccentric-only exercise: Introduction to an emerging concept

    Get PDF
    Eccentric resistance exercise emphasizes active muscle lengthening against resistance. In the past 15 years, researchers and practitioners have expressed considerable interest in accentuated eccentric (i.e., eccentric overload) and eccentric-only resistance exercise as strategies for enhancing performance and preventing and rehabilitating injuries. However, delivery of eccentric resistance exercise has been challenging because of equipment limitations. Previously, we briefly introduced the concept of connected adaptive resistance exercise (CARE)—the integration of software and hardware to provide a resistance that adjusts in real time and in response to the individual’s volitional force within and between repetitions. The aim of the current paper is to expand this discussion and explain the potential for CARE technology to improve the delivery of eccentric resistance exercise in various settings. First, we overview existing resistance exercise equipment and highlight its limitations for delivering eccentric resistance exercise. Second, we describe CARE and explain how it can accomplish accentuated eccentric and eccentric-only resistance exercise in a new way. We supplement this discussion with preliminary data collected with CARE technology in laboratory and non-laboratory environments. Finally, we discuss the potential for CARE technology to deliver eccentric resistance exercise for various purposes, e.g., research studies, rehabilitation programs, and home-based or telehealth interventions. Overall, CARE technology appears to permit completion of eccentric resistance exercise feasibly in both laboratory and non-laboratory environments and thus has implications for researchers and practitioners in the fields of sports medicine, physiotherapy, exercise physiology, and strength and conditioning. Nevertheless, formal investigations into the impact of CARE technology on participation in eccentric resistance exercise and clinical outcomes are still required
    • 

    corecore