3,844 research outputs found
ISWI remodeling complexes in Xenopus egg extracts: Identification as major chromosomal components that are regulated by INCENP-aurora B
We previously characterized major components of mitotic chromosomes assembled in Xenopus laevis egg extracts and collectively referred to them as Xenopuschromosome–associated polypeptides (XCAPs). They included five subunits of the condensin complex essential for chromosome condensation. In an effort to identify novel proteins involved in this process, we have isolated XCAP-F and found it to be theXenopus ortholog of ISWI, a chromatin remodeling ATPase. ISWI exists in two major complexes in Xenopus egg extracts. The first complex contains ACF1 and two low-molecular-weight subunits, most likely corresponding to Xenopus CHRAC. The second complex is a novel one that contains theXenopus ortholog of the human Williams syndrome transcription factor (WSTF). In the absence of the ISWI complexes, the deposition of histones onto DNA is apparently normal, but the spacing of nucleosomes is greatly disturbed. Despite the poor spacing of nucleosomes, ISWI depletion has little effect on DNA replication, chromosome condensation or sister chromatid cohesion in the cell-free extracts. The association of ISWI with chromatin is cell cycle regulated and is under the control of the INCENP-aurora B kinase complex that phosphorylates histone H3 during mitosis. Apparently contradictory to the generally accepted model, we find that neither chromosome condensation nor chromosomal targeting of condensin is compromised when H3 phosphorylation is drastically reduced by depletion of INCENP-aurora B
Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes
ISWI proteins form the catalytic core of a subset of ATP-dependent chromatin remodelling activities in eukaryotes from yeast to man. Many of these complexes have been found to reposition nucleosomes, but with different directionalities. We find that the yeast Isw1a, Isw2 and Chd1 enzymes preferentially move nucleosomes towards more central locations on short DNA fragments whereas Isw1b does not. Importantly, the inherent positioning properties of the DNA play an important role in determining where nucleosomes are relocated to by all of these enzymes. However, a key difference is that the Isw1a, Isw2 and Chd1 enzymes are unable to move nucleosomes to positions closer than 15 bp from a DNA end whereas Isw1b can. We also find that there is a correlation between the inability of enzymes to move nucleosomes close to DNA ends and the preferential binding to nucleosomes bearing linker DNA. These observations suggest that the accessibility of linker DNA together with the positioning properties of the underlying DNA play important roles in determining the outcome of remodelling by these enzymes
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes.
Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes
Regulation of ISWI chromatin remodelling activity
The packaging of the eukaryotic genome into chromatin facilitates the storage of the genetic information within the nucleus, but prevents the access to the underlying DNA sequences. Structural changes in chromatin are mediated by several mechanisms. Among them, ATP-dependent remodelling complexes belonging to ISWI family provides one of the best examples that eukaryotic cells evolved to finely regulate these changes. ISWI-containing complexes use the energy derived from ATP hydrolysis to rearrange nucleosomes on chromatin in order to favour specific nuclear reactions. The combination of regulatory nuclear factors associated with the ATPase subunit as well as its modulation by specific histone modifications, specializes the nuclear function of each ISWI-containing complex. Here we review the different ways by which ISWI enzymatic activity can be modulated and regulated in the nucleus of eukaryotic cells
The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains
The ATP-dependent chromatin-remodelling enzyme Chd1 is a 168-kDa protein consisting of a double chromodomain, Snf2-related ATPase domain, and a C-terminal DNA-binding domain. Here, we show the DNA-binding domain is required for Saccharomyces cerevisiae Chd1 to bind and remodel nucleosomes. The crystal structure of this domain reveals the presence of structural homology to SANT and SLIDE domains previously identified in ISWI remodelling enzymes. The presence of these domains in ISWI and Chd1 chromatin-remodelling enzymes may provide a means of efficiently harnessing the action of the Snf2-related ATPase domain for the purpose of nucleosome spacing and provide an explanation for partial redundancy between these proteins. Site directed mutagenesis was used to identify residues important for DNA binding and generate a model describing the interaction of this domain with DNA. Through inclusion of Chd1 sequences in homology searches SLIDE domains were identified in CHD6–9 proteins. Point mutations to conserved amino acids within the human CHD7 SLIDE domain have been identified in patients with CHARGE syndrome
ATP-dependent chromatosome remodeling
Chromatin serves to package, protect and organize the complex eukaryotic genomes to assure their stable inheritance over many cell generations. At the same time, chromatin must be dynamic to allow continued use of DNA during a cell's lifetime. One important principle that endows chromatin with flexibility involves ATP-dependent `remodeling' factors, which alter DNA-histone interactions to form, disrupt or move nucleosomes. Remodeling is well documented at the nucleosomal level, but little is known about the action of remodeling factors in a more physiological chromatin environment. Recent findings suggest that some remodeling machines can reorganize even folded chromatin fibers containing the linker histone H1, extending the potential scope of remodeling reactions to the bulk of euchromatin
Snf2 family ATPases and DExx box helicases:differences and unifying concepts from high-resolution crystal structures
Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA–protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA. Crystal structures suggest that these enzymes travel along the minor groove, a process that can generate the torque or energy in remodelling processes. We review the recent structural and biochemical findings which suggest a common mechanistic basis underlies the action of many of both Snf2 family and DExx box helicases
Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy.
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in pathological cardiac hypertrophy, but the mechanisms by which it modulates gene activity in the nucleus to mediate hypertrophic signaling remain unclear. Here, we report that nuclear CaMKII activates cardiac transcription by directly binding to chromatin and regulating the phosphorylation of histone H3 at serine-10. These specific activities are demonstrated both in vitro and in primary neonatal rat cardiomyocytes. Activation of CaMKII signaling by hypertrophic agonists increases H3 phosphorylation in primary cardiac cells and is accompanied by concomitant cellular hypertrophy. Conversely, specific silencing of nuclear CaMKII using RNA interference reduces both H3 phosphorylation and cellular hypertrophy. The hyper-phosphorylation of H3 associated with increased chromatin binding of CaMKII occurs at specific gene loci reactivated during cardiac hypertrophy. Importantly, H3 Ser-10 phosphorylation and CaMKII recruitment are associated with increased chromatin accessibility and are required for chromatin-mediated transcription of the Mef2 transcription factor. Unlike phosphorylation of H3 by other kinases, which regulates cellular proliferation and immediate early gene activation, CaMKII-mediated signaling to H3 is associated with hypertrophic growth. These observations reveal a previously unrecognized function of CaMKII as a kinase signaling to histone H3 and remodeling chromatin. They suggest a new epigenetic mechanism controlling cardiac hypertrophy
- …
