2 research outputs found

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Curve Estimation and Signal Discrimination in Spatial Problems

    No full text
    In many instances arising prominently, but not exclusively, in imaging problems, it is important to condense the salient information so as to obtain a low-dimensional approximant of the data. This thesis is concerned with two basic situations which call for such a dimension reduction. The first of these is the statistical recovery of smooth edges in regression and density surfaces. The edges are understood to be contiguous curves, although they are allowed to meander almost arbitrarily through the plane, and may even split at a finite number of points to yield an edge graph. A novel locally-parametric nonparametric method is proposed which enjoys the benefit of being relatively easy to implement via a `tracking' approach. These topics are discussed in Chapters 2 and 3, with pertaining background material being given in the Appendix. In Chapter 4 we construct concomitant confidence bands for this estimator, which have asymptotically correct coverage probability. The construction can be likened to only a few existing approaches, and may thus be considered as our main contribution. ¶ Chapter 5 discusses numerical issues pertaining to the edge and confidence band estimators of Chapters 2-4. Connections are drawn to popular topics which originated in the fields of computer vision and signal processing, and which surround edge detection. These connections are exploited so as to obtain greater robustness of the likelihood estimator, such as with the presence of sharp corners. ¶ Chapter 6 addresses a dimension reduction problem for spatial data where the ultimate objective of the analysis is the discrimination of these data into one of a few pre-specified groups. In the dimension reduction step, an instrumental role is played by the recently developed methodology of functional data analysis. Relatively standar non-linear image processing techniques, as well as wavelet shrinkage, are used prior to this step. A case study for remotely-sensed navigation radar data exemplifies the methodology of Chapter 6
    corecore