7,739 research outputs found

    Functionality and history of electronics in regards to the performance practice of the following works: Temazcal (1984), Javier Álvarez, and Memory Palace (2012), Christopher Cerrone

    Get PDF
    Master's Project (M.Mu.) University of Alaska Fairbanks, 2016The Electroacoustic pieces; Temazcal (1984), by Javier Alvarez (b.1956), and Memory Palace (2012) by Christopher Cerrone (b.1984), each employ different types of electronic technologies in their realization through performance. This paper will discuss the origin and history of the technology applied respectively in the works. I will examine the role of percussion within the works, specifically in regards to learning and problem solving through technological challenges in order to effectively perform the compositions. By looking at Temazcal and Memory Palace through the context of their historical significance as electroacoustic works, the inherent functionality of the technology employed in each, and the resultant performance practices that have subsequently developed, a greater musical appreciation and understanding of electroacoustic works, in general, is possible

    Infrared Colors at the Stellar/Substellar Boundary

    Get PDF
    We present new infrared photometry for 61 halo and disk stars around the stellar/substellar boundary. These data are combined with available optical photometry and astrometric data to produce color--color and absolute magnitude--color diagrams. The disk and halo sequences are compared to the predictions of the latest model atmospheres and structural models. We find good agreement between observation and theory except for known problems in the V and H passbands probably due to incomplete molecular data for TiO, metal hydrides and H2_2O. The metal--poor M subdwarfs are well matched by the models as oxide opacity sources are less important in this case. The known extreme M subdwarfs have metallicities about one--hundredth solar, and the coolest subdwarfs have Teff3000_{eff}\sim 3000 K with masses \sim 0.09M/M_{\odot}. The grainless models are not able to reproduce the flux distributions of disk objects with Teff<_{eff} < 2500 K, however a preliminary version of the NextGen--Dusty models which includes homogeneous formation and extinction by dust grains {\it is} able to match the colors of these very cool objects. The least luminous objects in this sample are GD165B, three DENIS objects --- DBD0205, DBD1058 and DBD1228 --- and Kelu-1. These have Teff_{eff}\sim 2000 K and are at or below the stellar limit with masses \leq0.075M/M_{\odot}. Photometry alone cannot constrain these parameters further as the age is unknown, but published lithium detections for two of these objects (Kelu-1 and DBD1228) imply that they are young (aged about 1 Gyr) and substellar (mass \leq0.06M/M_{\odot}).Comment: ApJ, in press. 18 pages. Also available at ftp://ftp.jach.hawaii.edu/pub/ukirt/skl/dM_preprint

    Final Research Report for Sound Design and Audio Player

    Get PDF
    This deliverable describes the work on Task 4.3 Algorithms for sound design and feature developments for audio player. The audio player runs on the in-store player (ISP) and takes care of rendering the music playlists via beat-synchronous automatic DJ mixing, taking advantage of the rich musical content description extracted in T4.2 (beat markers, structural segmentation into intro and outro, musical and sound content classification). The deliverable covers prototypes and final results on: (1) automatic beat-synchronous mixing by beat alignment and time stretching – we developed an algorithm for beat alignment and scheduling of time-stretched tracks; (2) compensation of play duration changes introduced by time stretching – in order to make the playlist generator independent of beat mixing, we chose to readjust the tempo of played tracks such that their stretched duration is the same as their original duration; (3) prospective research on the extraction of data from DJ mixes – to alleviate the lack of extensive ground truth databases of DJ mixing practices, we propose steps towards extracting this data from existing mixes by alignment and unmixing of the tracks in a mix. We also show how these methods can be evaluated even without labelled test data, and propose an open dataset for further research; (4) a description of the software player module, a GUI-less application to run on the ISP that performs streaming of tracks from disk and beat-synchronous mixing. The estimation of cue points where tracks should cross-fade is now described in D4.7 Final Research Report on Auto-Tagging of Music.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    Design of the Front End Electronics for the Infrared Camera of JEM-EUSO, and manufacturing and verification of the prototype model

    Full text link
    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above 101910^{19} eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than 100μ100 \muV from 11 Hz to 1010 MHz, temperature control of the microbolometer, from 1010^{\circ}C to 4040^{\circ}C with stability better than 1010 mK over 4.84.8 hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction

    Seeing statistics at the upgraded 3.8m UK infrared telescope (UKIRT)

    Get PDF
    From 1991 until 1997, the 3.8m UK Infrared Telescope (UKIRT) underwent a programme of upgrades aimed at improving its intrinsic optical performance. This resulted in images with a FWHM of 0."17 at 2.2 um in September 1998. To understand and maintain the improvements to the delivered image quality since the completion of the upgrades programme, we have regularly monitored the overall atmospheric seeing, as measured by radial displacements of subaperture images (i.e. seeing-generated focus fluctuations), and the delivered image diameters. The latter have been measured and recorded automatically since the beginning of 2001 whenever the facility imager UFTI (UKIRT Fast Track Imager) has been in use. In this paper we report the results of these measurements. We investigate the relation between the delivered image diameter and the RMS atmospheric seeing (as measured by focus fluctuations, mentioned above). We find that the best seeing occurs in the second half of the night, generally after 2am HST and that the best seeing occurs in the summer between the months of July and September. We also find that the relationship between Zrms and delivered image diameter is uncertain. As a result Zrms frequently predicts a larger FWHM than that measured in the images. Finally, we show that there is no correlation between near-infrared seeing measured at UKIRT and sub-mm seeing measured at the Caltech Submillimetre Observatory (CSO).Comment: 10 pages to appear in the SPIE proceeding vol. 4484 on Observatory Operations to Maximize Scientific Retur

    The Metallicity and Reddening of Stars in the Inner Galactic Bulge

    Get PDF
    We present a preliminary analysis of K, J-K color magnitude diagrams (CMDs) for 7 different positions on or close to the minor axis of the Milky Way at Galactic latitudes between +0.1^\circ and -2.8^\circ. From the slopes of the (linear) giant branches in these CMDs we derive a dependence of on latitude for b between -0.8^\circ and -2.8^\circ of -0.085 \pm 0.033 dex/degree. When combined with the data from Tiede et al. we find for -0.8^\circ \leq b \leq -10.3^\circ the slope in is -0.064 \pm 0.012 dex/degree. An extrapolation to the Galactic Center predicts [Fe/H] = +0.034 \pm 0.053 dex. We also derive average values for the extinction in the K band (A_K) of between 2.15 and 0.27 for the inner bulge fields corresponding to average values of E(J-K) of between 3.46 and 0.44. There is a well defined linear relation between the average extinction for a field and the star-to-star scatter in the extinction for the stars within each field. This result suggests that the typical apparent angular scale size for an absorbing cloud is small compared with the field size (90\arcsec on a side). Finally, from an examination of the luminosity function of bright giants in each field we conclude that the young component of the stellar population observed near the Galactic center declines in density much more quickly than the overall bulge population and is undetectable beyond 1^\circ from the Galactic center.Comment: accepted for publication in Astron. Jour. Compressed file contains the text, 9 figures, and 6 tables prepared with AAS Latex macros v. 4.

    Infrared Spectra and Spectral Energy Distributions of Late-M- and L-Dwarfs

    Get PDF
    We have obtained 1.0-2.5um spectra at R~600 of 14 disk dwarfs with spectral types M6 to L7. For four of the dwarfs we have also obtained infrared spectra at R~3000 in narrow intervals. In addition, we present new L' photometry for four of the dwarfs in the sample, which allows improved determinations of their bolometric luminosities. We resolve the L-dwarf Denis-P J 0205-1159 into an identical pair of objects separated by 0.35". The spectra, with the published energy distribution for one other dwarf, are compared to synthetic spectra generated by upgraded model atmospheres. Good matches are found for 2200> Teff K>1900 (spectral types around M9 to L3), but discrepancies exist at Teff> 2300 K (M8) and for Teff<1800 K (L4-L7). At the higher temperatures the mismatches are due to incompleteness in the water vapor linelist. At the lower temperatures the disagreement is probably due to our treatment of dust: we assume a photospheric distribution in equilibrium with the gas phase. We derive effective temperatures for the sample from the comparison with synthetic spectra and also by comparing our observed total intrinsic luminosities to structural model calculations (which are mostly independent of the atmosphere but are dependent on the unknown masses and ages of the targets). The two derivations agree to ~200 K except for the faintest object in the sample where the discrepancy is larger. Agreement with other temperature determinations is also ~200 K, except for the L7 dwarf.Comment: 31 pages incl. 5 Tables and 12 Figures, accepted by ApJ for Feb 2001 issu
    corecore