609,675 research outputs found
Nanostructuring lithium niobate substrates by focused ion beam milling
We report on two novel ways for patterning Lithium Niobate (LN) at
submicronic scale by means of focused ion beam (FIB) bombardment. The first
method consists of direct FIB milling on LiNbO3 and the second one is a
combination of FIB milling on a deposited metallic layer and subsequent RIE
(Reactive Ion Etching) etching. FIB images show in both cases homogeneous
structures with well reproduced periodicity. These methods open the way to the
fabrication of photonic crystals on LiNbO3 substrates
Ion friction at small values of the Coulomb logarithm
Transport properties of high-energy-density plasmas are influenced by the ion
collision rate. Traditionally, this rate involves the Coulomb logarithm,
. Typical values of are \approx 10~\mbox{to}~20 in
kinetic theories where transport properties are dominated by weak-scattering
events caused by long-range forces. The validity of these theories breaks down
for strongly-coupled plasmas, when is of order one. We present
measurements and simulations of collision data in strongly-coupled plasmas when
is small. Experiments are carried out in the first dual-species
ultracold neutral plasma (UNP), using Ca and Yb ions. We find strong
collisional coupling between the different ion species in the bulk of the
plasma. We simulate the plasma using a two-species fluid code that includes
Coulomb logarithms derived from either a screened Coulomb potential or a the
potential of mean force. We find generally good agreement between the
experimental measurements and the simulations. With some improvements, the
mixed Ca and Yb dual-species UNP will be a promising platform for
testing theoretical expressions for and collision cross-sections
from kinetic theories through measurements of energy relaxation, stopping
power, two-stream instabilities, and the evolution of sculpted distribution
functions in an idealized environment in which the initial temperatures,
densities, and charge states are accurately known.Comment: 8 pages, 4 figures, 75 reference
The glasma initial state and JIMWLK factorization
We review recent work on understanding the next to leading order corrections
to the classical fields that dominate the initial stages of a heavy ion
collision. We have recently shown that the leading ln(1/x) divergences of these
corrections to gluon multiplicities can be factorized into the JIMWLK evolution
of the color charge density distributions.Comment: 4 pages, 2 figures. Talk given by T.L. at Strong and Electroweak
Matter 2008 (SEWM08), August 26-29, 2008, Amsterdam, The Netherland
Intracluster interactions in butterfly {Fe3 LnO2} molecules with the non-Kramers ions Tb(III) and Ho(III)
The intracluster exchange interactions within the >butterfly> [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3] molecules, where Ln(III) represents a lanthanide cation, have been determined by a combination of x-ray magnetic circular dichroism (XMCD) and vibrating sample magnetometry (VSM) along with an interaction model. We have studied the compounds with Ln=Tb and Ho, both non-Kramers lanthanides and with high uniaxial anisotropy, and Ln=Lu(III) and Y(III) as pseudolanthanides, which supply nonmagnetic Ln reference cases. At low temperature, the three Fe atoms can be considered as a self-unit with total spin SFe3=5/2. Using the element selectivity of the XMCD magnetometry, measured at the Ln L2,3 edges, together with the VSM measurements, the local magnetization of the Ln ion and the Fe3 subcluster, as a function of the field and low temperature (T≈2.5K), has been determined separately. These results are described quantitatively in the framework of a theoretical model based on an effective spin Hamiltonian, which considers the competing effects of intracluster interactions and the external applied magnetic field. The Ln-Fe3 exchange interaction within the {Fe3LnO2} cluster has been determined to be antiferromagnetic, in both Tb and Ho compounds, with JFeTb/kB=-0.13(1)K and JFeHo/kB=-0.18(1)K, respectively. In both cases, a field-induced reorientation of the Fe3 and Ln spins from antiparallel to parallel orientation takes place at a threshold field μ0H=1.1 and 2 T, for the {Fe3TbO2} and {Fe3HoO2} compounds, respectively. By comparison with other compounds of the series with uniaxial anisotropy, it is concluded that the polarizability of the Fe3 subcluster magnetic moment decreases in the trend {Fe3YO2}→{Fe3TbO2}→{Fe3HoO2}→{Fe3DyO2}, because of the increasing opposition of the exchange antiferromagnetic field caused by the Ln ion. In the Ln=Tb, Ho, and Dy, the magnetization of the whole molecule is dominated by the anisotropy of the Ln ion. The intracluster Fe3-Ln exchange interactions are very weak compared to the Ln ligand field and Fe-Fe exchange interactions.The projects MINECO (MAT2011/23791, MAT2011/27233-C02-02, and MAT2014/53921-R), DGA IMANA E34, and Alexander Von Humboldt Foundation (D.P.) are acknowledged for financial support.Peer Reviewe
Recommended from our members
Complexation of lanthanides, actinides and transition metal cations with a 6-(1,2,4-triazin-3-yl)-2,2’:6’,2’’-terpyridine ligand: implications for actinide(III) /lanthanide(III) partitioning
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2’:6’,2’’-terpyridine (CyMe4-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of the 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO22+) ion were obtained by X-ray crystallographic analysis, and showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. 1H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligand
Fabrication and characterizations of proton-exchanged LiNbO3 waveguides fabricated by inductively coupled plasma technique
This Letter reports the use of an inductively coupled plasma technique for fabrication of proton-exchanged (PE) LiNbO3 (LN) waveguides. Planar and stripe waveguides have been formed in Y-cut LN which are difficult to obtain with the conventional molten acid method due to the occurrence of surface damage. Secondary ion mass spectrometry, scanning electron microscopy, and infrared absorption spectrum characterization results revealed that a uniform vertical PE profile with a single low order crystal phase has been directly obtained as a result of this unique process. X-ray photoelectron spectroscopy characterization of the treated surface revealed the existence of NbO as the cause for a sometimes darkened surface and confirms the ability to completely restore the surface to LN by oxygen plasma treatment. Atomic force microscopy measurement confirms that good surface quality has been maintained after regeneration of the surface to LN
- …
