303 research outputs found

    Verified partial eigenvalue computations using contour integrals for Hermitian generalized eigenproblems

    Full text link
    We propose a verified computation method for partial eigenvalues of a Hermitian generalized eigenproblem. The block Sakurai-Sugiura Hankel method, a contour integral-type eigensolver, can reduce a given eigenproblem into a generalized eigenproblem of block Hankel matrices whose entries consist of complex moments. In this study, we evaluate all errors in computing the complex moments. We derive a truncation error bound of the quadrature. Then, we take numerical errors of the quadrature into account and rigorously enclose the entries of the block Hankel matrices. Each quadrature point gives rise to a linear system, and its structure enables us to develop an efficient technique to verify the approximate solution. Numerical experiments show that the proposed method outperforms a standard method and infer that the proposed method is potentially efficient in parallel.Comment: 15 pages, 4 figures, 1 tabl

    Subsquares Approach - Simple Scheme for Solving Overdetermined Interval Linear Systems

    Full text link
    In this work we present a new simple but efficient scheme - Subsquares approach - for development of algorithms for enclosing the solution set of overdetermined interval linear systems. We are going to show two algorithms based on this scheme and discuss their features. We start with a simple algorithm as a motivation, then we continue with a sequential algorithm. Both algorithms can be easily parallelized. The features of both algorithms will be discussed and numerically tested.Comment: submitted to PPAM 201

    Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix

    Full text link
    We consider a symmetric matrix, the entries of which depend linearly on some parameters. The domains of the parameters are compact real intervals. We investigate the problem of checking whether for each (or some) setting of the parameters, the matrix is positive definite (or positive semidefinite). We state a characterization in the form of equivalent conditions, and also propose some computationally cheap sufficient\,/\,necessary conditions. Our results extend the classical results on positive (semi-)definiteness of interval matrices. They may be useful for checking convexity or non-convexity in global optimization methods based on branch and bound framework and using interval techniques
    • …
    corecore