145,895 research outputs found

    Hydrodynamic type integrable equations on a segment and a half-line

    Get PDF
    The concept of integrable boundary conditions is applied to hydrodynamic type systems. Examples of such boundary conditions for dispersionless Toda systems are obtained. The close relation of integrable boundary conditions with integrable reductions of multi-field systems is observed. The problem of consistency of boundary conditions with the Hamiltonian formulation is discussed. Examples of Hamiltonian integrable hydrodynamic type systems on a segment and a semi-line are presented

    Coupling symmetries with Poisson structures

    Full text link
    We study local normal forms for completely integrable systems on Poisson manifolds in the presence of additional symmetries. The symmetries that we consider are encoded in actions of compact Lie groups. The existence of Weinstein's splitting theorem for the integrable system is also studied giving some examples in which such a splitting does not exist, i.e. when the integrable system is not, locally, a product of an integrable system on the symplectic leaf and an integrable system on a transversal. The problem of splitting for integrable systems with additional symmetries is also considered.Comment: 14 page

    Integrable Hamiltonian systems with vector potentials

    Full text link
    We investigate integrable 2-dimensional Hamiltonian systems with scalar and vector potentials, admitting second invariants which are linear or quadratic in the momenta. In the case of a linear second invariant, we provide some examples of weakly-integrable systems. In the case of a quadratic second invariant, we recover the classical strongly-integrable systems in Cartesian and polar coordinates and provide some new examples of integrable systems in parabolic and elliptical coordinates.Comment: 23 pages, Submitted to Journal of Mathematical Physic

    Dispersionless integrable equations as coisotropic deformations. Extensions and reductions

    Full text link
    Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systInterpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level. ems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level.Comment: 21 pages, misprints correcte

    Constrained lattice-field hierarchies and Toda system with Block symmetry

    Full text link
    In this paper, we construct the additional WW-symmetry and ghost symmetry of two-lattice field integrable hierarchies. Using the symmetry constraint, we construct constrained two-lattice integrable systems which contain several new integrable difference equations. Under a further reduction, the constrained two-lattice integrable systems can be combined into one single integrable system, namely the well-known one dimensional original Toda hierarchy. We prove that the one dimensional original Toda hierarchy has a nice Block Lie symmetry.Comment: 16 Pages, accepted for publication in International Journal of Geometric Methods in Modern Physic
    corecore