110,580 research outputs found
High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrP in vivo
Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Diagnosis of transmissible spongiform encephalopathy (TSE) disease in humans and ruminants relies on the detection in post-mortem brain tissue of the protease-resistant form of the host glycoprotein PrP. The presence of this abnormal isoform (PrPSc) in tissues is taken as indicative of the presence of TSE infectivity. Here we demonstrate conclusively that high titers of TSE infectivity can be present in brain tissue of animals that show clinical and vacuolar signs of TSE disease but contain low or undetectable levels of PrPSc. This work questions the correlation between PrPSc level and the titer of infectivity and shows that tissues containing little or no proteinase K-resistant PrP can be infectious and harbor high titers of TSE infectivity. Reliance on protease-resistant PrPSc as a sole measure of infectivity may therefore in some instances significantly underestimate biological properties of diagnostic samples, thereby undermining efforts to contain and eradicate TSEs.https://doi.org/10.1074/jbc.M704329200282pubpub4
Predicting the size and probability of epidemics in a population with heterogeneous infectiousness and susceptibility
We analytically address disease outbreaks in large, random networks with
heterogeneous infectivity and susceptibility. The transmissibility
(the probability that infection of causes infection of ) depends on the
infectivity of and the susceptibility of . Initially a single node is
infected, following which a large-scale epidemic may or may not occur. We use a
generating function approach to study how heterogeneity affects the probability
that an epidemic occurs and, if one occurs, its attack rate (the fraction
infected). For fixed average transmissibility, we find upper and lower bounds
on these. An epidemic is most likely if infectivity is homogeneous and least
likely if the variance of infectivity is maximized. Similarly, the attack rate
is largest if susceptibility is homogeneous and smallest if the variance is
maximized. We further show that heterogeneity in infectious period is
important, contrary to assumptions of previous studies. We confirm our
theoretical predictions by simulation. Our results have implications for
control strategy design and identification of populations at higher risk from
an epidemic.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter
Interactions between vaccinia virus and sensitized macrophages in vitro
The action of peritoneal exudate cells (PEC) from normal and vaccinia virus infected mice on infectious vaccinia virus particles was investigatedin vitro. PEC from immune mice showed a significantly higher infectivity titre reduction (virus clearance, VC) than normal cells. This effect could be clearly attributed to the macrophage. Vaccinia virus multiplied in PEC from normal animals while there was no virus propagation in cells from immunized mice. The release of adsorbed or engulfed virus was reduced significantly in PEC from immunized animals. Anti-vaccinia-antibodies seem to activate normal macrophages to increased virus clearance. This stimulating effect was demonstrable only in the IgG fraction of the antiserum.
The activity of macrophages from mice injected three times over a period of 14 days with vaccinia virus could be entirely blocked with anti-mouse-IgG, while PEC from mice injected one time six days previously were not inhibited
Dual-acting stapled peptides target both HIV-1 entry and assembly
Background:
Previously, we reported the conversion of the 12-mer linear and cell-impermeable peptide CAI to a cell-penetrating peptide NYAD-1 by using an i,i + 4 hydrocarbon stapling technique and confirmed its binding to the C-terminal domain (CTD) of the HIV-1 capsid (CA) protein with an improved affinity (Kd ~ 1 μM) compared to CAI (Kd ~ 15 μM). NYAD-1 disrupts the formation of both immature- and mature-like virus particles in in vitro and cell-based assembly assays. In addition, it displays potent anti-HIV-1 activity in cell culture against a range of laboratory-adapted and primary HIV-1 isolates.<p></p>
Results:
In this report, we expanded the study to i,i + 7 hydrocarbon-stapled peptides to delineate their mechanism of action and antiviral activity. We identified three potent inhibitors, NYAD-36, -66 and -67, which showed strong binding to CA in NMR and isothermal titration calorimetry (ITC) studies and disrupted the formation of mature-like particles. They showed typical α-helical structures and penetrated cells; however, the cell penetration was not as efficient as observed with the i,i + 4 peptides. Unlike NYAD-1, the i,i + 7 peptides did not have any effect on virus release; however, they impaired Gag precursor processing. HIV-1 particles produced in the presence of these peptides displayed impaired infectivity. Consistent with an effect on virus entry, selection for viral resistance led to the emergence of two mutations in the gp120 subunit of the viral envelope (Env) glycoprotein, V120Q and A327P, located in the conserved region 1 (C1) and the base of the V3 loop, respectively.<p></p>
Conclusion:
The i,i + 7 stapled peptides derived from CAI unexpectedly target both CA and the V3 loop of gp120. This dual-targeted activity is dependent on their ability to penetrate cells as well as their net charge. This mechanistic revelation will be useful in further modifying these peptides as potent anti-HIV-1 agents.<p></p>
Week 52 Influenza Forecast for the 2012-2013 U.S. Season
This document is another installment in a series of near real-time weekly
influenza forecasts made during the 2012-2013 influenza season. Here we present
some of the results of forecasts initiated following assimilation of
observations for Week 52 (i.e. the forecast begins December 30, 2012) for
municipalities in the United States. The forecasts were made on January 4,
2013. Results from forecasts initiated the five previous weeks (Weeks 47-51)
are also presented
Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity
Norovirus is one of the most common causes of acute viral gastroenteritis. The virus is spread via the fecal-oral route, most commonly from infected food and water, but several outbreaks have originated from contamination of surfaces with infectious virus. In this study, a close surrogate of human norovirus causing gastrointestinal disease in mice, murine norovirus type 1 (MNV-1), retained infectivity for more than 2 weeks following contact with a range of surface materials, including Teflon (polytetrafluoroethylene [PTFE]), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. Persistence was slightly prolonged on ceramic surfaces. A previous study in our laboratory observed that dry copper and copper alloy surfaces rapidly inactivated MNV-1 and destroyed the viral genome. In this new study, we have observed that a relatively small change in the percentage of copper, between 70 and 80% in copper nickels and 60 and 70% in brasses, had a significant influence on the ability of the alloy to inactivate norovirus. Nickel alone did not affect virus, but zinc did have some antiviral effect, which was synergistic with copper and resulted in an increased efficacy of brasses with lower percentages of copper. Electron microscopy of purified MNV-1 that had been exposed to copper and stainless steel surfaces suggested that a massive breakdown of the viral capsid had occurred on copper. In addition, MNV-1 that had been exposed to copper and treated with RNase demonstrated a reduction in viral gene copy number. This suggests that capsid integrity is compromised upon contact with copper, allowing copper ion access to the viral genome
- …
