116,360 research outputs found
Recombination Reactions as a Possible Mechanism of Mass-Independent Fractionation of Sulfur Isotopes in the Archean Atmosphere of Earth
A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: 33S, 34S, and 36S. Interestingly, the ratio of capital Δ values obtained within this model for 33S and 36S is −1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth
Non-WKB Models of the FIP Effect: The Role of Slow Mode Waves
A model for element abundance fractionation between the solar chromosphere
and corona is further developed. The ponderomotive force due to Alfven waves
propagating through, or reflecting from the chromosphere in solar conditions
generally accelerates chromospheric ions, but not neutrals, into the corona.
This gives rise to what has become known as the First Ionization Potential
(FIP) Effect. We incorporate new physical processes into the model. The
chromospheric ionization balance is improved, and the effect of different
approximations is discussed. We also treat the parametric generation of slow
mode waves by the parallel propagating Alfven waves. This is also an effect of
the ponderomotive force, arising from the periodic variation of the magnetic
pressure driving an acoustic mode, which adds to the background longitudinal
pressure. This can have subtle effects on the fractionation, rendering it
quasi-mass independent in the lower regions of the chromosphere. We also
briefly discuss the change in the fractionation with Alfven wave frequency,
relative to the frequency of the overlying coronal loop resonance.Comment: 32 pages, 8 figures, accepted by Ap
Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion
Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process
Fast deuterium fractionation in magnetized and turbulent filaments
Deuterium fractionation is considered as an important process to infer the
chemical ages of prestellar cores in filaments. We present here the first
magneto-hydrodynamical simulations including a chemical network to study
deuterium fractionation in magnetized and turbulent filaments and their
substructures. The filaments typically show widespread deuterium fractionation
with average values . For individual cores of similar age, we
observe the deuteration fraction to increase with time, but also to be
independent of their average properties such as density, virial or
mass-to-magnetic flux ratio. We further find a correlation of the deuteration
fraction with core mass, average H density and virial parameter only at
late evolutionary stages of the filament and attribute this to the lifetime of
the individual cores. Specifically, chemically old cores reveal higher
deuteration fractions. Within the radial profiles of selected cores, we notice
differences in the structure of the deuteration fraction or surface density,
which we can attribute to their different turbulent properties. High
deuteration fractions of the order may be reached within
approximately ~kyrs, corresponding to two free-fall times, as defined for
cylindrical systems, of the filamentsComment: submitted to MNRAS. Comments welcom
A Born-Oppenheimer photolysis model of N_2O fractionation
The isotopically light N_2O produced by microbial activity is thought to be balanced by the return of heavy stratospheric nitrous oxide. The Yung and Miller [1997] method that first explained these trends yields photolytic fractionation factors ∼half those observed by experiment or predicted quantum mechanically, however. To address these issues, we present here a Born-Oppenheimer photolysis model that uses only commonly available spectroscopic data. The predicted fractionations quantitatively reproduce laboratory data, and have been incorporated into zonally averaged atmospheric simulations. Like McLinden et al. [2003] , who employ a three-dimensional chemical transport model with cross sections scaled to match laboratory data, we find excellent agreement between predictions and stratospheric measurements; additional processes that contribute to the mass independent anomaly in N_2O can only account for a fraction of its global budget
Three-phase coexistence with sequence partitioning in symmetric random block copolymers
We inquire about the possible coexistence of macroscopic and microstructured
phases in random Q-block copolymers built of incompatible monomer types A and B
with equal average concentrations. In our microscopic model, one block
comprises M identical monomers. The block-type sequence distribution is
Markovian and characterized by the correlation \lambda. Upon increasing the
incompatibility \chi\ (by decreasing temperature) in the disordered state, the
known ordered phases form: for \lambda\ > \lambda_c, two coexisting macroscopic
A- and B-rich phases, for \lambda\ < \lambda_c, a microstructured (lamellar)
phase with wave number k(\lambda). In addition, we find a fourth region in the
\lambda-\chi\ plane where these three phases coexist, with different,
non-Markovian sequence distributions (fractionation). Fractionation is revealed
by our analytically derived multiphase free energy, which explicitly accounts
for the exchange of individual sequences between the coexisting phases. The
three-phase region is reached, either, from the macroscopic phases, via a third
lamellar phase that is rich in alternating sequences, or, starting from the
lamellar state, via two additional homogeneous, homopolymer-enriched phases.
These incipient phases emerge with zero volume fraction. The four regions of
the phase diagram meet in a multicritical point (\lambda_c, \chi_c), at which
A-B segregation vanishes. The analytical method, which for the lamellar phase
assumes weak segregation, thus proves reliable particularly in the vicinity of
(\lambda_c, \chi_c). For random triblock copolymers, Q=3, we find the character
of this point and the critical exponents to change substantially with the
number M of monomers per block. The results for Q=3 in the continuous-chain
limit M -> \infty are compared to numerical self-consistent field theory
(SCFT), which is accurate at larger segregation.Comment: 24 pages, 19 figures, version published in PRE, main changes: Sec.
IIIA, Fig. 14, Discussio
Stable isotope fractionation during ultraviolet photolysis of N_2O
The biogeochemical cycling of nitrous oxide plays an important role in greenhouse forcing and ozone regulation. Laboratory studies of N_2O:N_2 mixtures irradiated between 193–207 nm reveal a significant enrichment of the residual heavy nitrous oxide isotopomers. The isotopic signatures resulting from photolysis are well modeled by an irreversible Rayleigh distillation process, with large enrichment factors of ε_(15,18)(193 nm) = −18.4,‐14.5 per mil and ε_(15,18)(207 nm) = −48.7,‐46.0 per mil. These results, when combined with diffusive mixing processes, have the potential to explain the stratospheric enrichments previously observed
Positionally dependent ^(15)N fraction factors in the UV photolysis of N_2O determined by high resolution FTIR spectroscopy
Positionally dependent fractionation factors for the photolysis of isotopomers of N_2O in natural abundance have been determined by high resolution FTIR spectroscopy at three photolysis wavelengths. Fractionation factors show clear 15N position and photolysis wavelength dependence and are in qualitative agreement with theoretical models but are twice as large. The fractionation factors increase with photolysis wavelength from 193 to 211 nm, with the fractionation factors at 207.6 nm for ^(14)N^(15)N^916)O, ^(15)N^(14)N^(16)O and ^(14)N^(14)N^(18)O equal to −66.5±5‰,−27.1±6‰ and −49±10‰, respectively
The Dual Origin of the Terrestrial Atmosphere
The origin of the terrestrial atmosphere is one of the most puzzling enigmas
in the planetary sciences. It is suggested here that two sources contributed to
its formation, fractionated nebular gases and accreted cometary volatiles.
During terrestrial growth, a transient gas envelope was fractionated from
nebular composition. This transient atmosphere was mixed with cometary
material. The fractionation stage resulted in a high Xe/Kr ratio, with xenon
being more isotopically fractionated than krypton. Comets delivered volatiles
having low Xe/Kr ratios and solar isotopic compositions. The resulting
atmosphere had a near-solar Xe/Kr ratio, almost unfractionated krypton
delivered by comets, and fractionated xenon inherited from the fractionation
episode. The dual origin therefore provides an elegant solution to the
long-standing "missing xenon" paradox. It is demonstrated that such a model
could explain the isotopic and elemental abundances of Ne, Ar, Kr, and Xe in
the terrestrial atmosphere.Comment: Icarus, in press, 31 pages, 6 tables, and 6 figure
- …
