1,094 research outputs found

    Gearing effects of the patella (knee extensor muscle sesamoid) of the helmeted guineafowl during terrestrial locomotion

    Get PDF
    Human patellae (kneecaps) are thought to act as gears, altering the mechanical advantage of knee extensor muscles during running. Similar sesamoids have evolved in the knee extensor tendon independently in birds, but it is unknown if these also affect the mechanical advantage of knee extensors. Here, we examine the mechanics of the patellofemoral joint in the helmeted guineafowl Numida meleagris using a method based on muscle and tendon moment arms taken about the patella's rotation centre around the distal femur. Moment arms were estimated from a computer model representing hindlimb anatomy, using hip, knee and patellar kinematics acquired via marker‐based biplanar fluoroscopy from a subject running at 1.6 ms−1 on a treadmill. Our results support the inference that the patella of Numida does alter knee extensor leverage during running, but with a mechanical advantage generally greater than that seen in humans, implying relatively greater extension force but relatively lesser extension velocity

    Superintegrability in the Manev Problem and its Real Form Dynamics

    Full text link
    We report here the existence of Ermanno-Bernoulli type invariants for the Manev model dynamics which may be viewed upon as remnants of Laplace-Runge-Lenz vector whose conservation is characteristic of the Kepler model. If the orbits are bounded these invariants exist only when a certain rationality condition is met and thus we have superintegrability only on a subset of initial values. We analyze real form dynamics of the Manev model and derive that it is always superintegrable. We also discuss the symmetry algebras of the Manev model and its real Hamiltonian form.Comment: 12 pages, LaTeX, In: Prof. G. Manev's Legacy in Contemporary Astronomy, Theoretical and Gravitational Physics, V. Gerdjikov, M. Tsvetkov (Eds), Heron Press, Sofia 2005, pp. 155-16

    G-quadruplexes are specifically recognized and distinguished by selected designed ankyrin repeat proteins

    Get PDF
    We introduce designed ankyrin repeat binding proteins (DARPins) as a novel class of highly specific and structure-selective DNA-binding proteins, which can be functionally expressed within all cells. Human telomere quadruplex was used as target to select specific binders with ribosome display. The selected DARPins discriminate the human telomere quadruplex against the telomeric duplex and other quadruplexes. Affinities of the selected binders range from 3 to 100 nM. CD studies confirm that the quadruplex fold is maintained upon binding. The DARPins show different specificity profiles: some discriminate human telomere quadruplexes from other quadruplex-forming sequences like ILPR, c-MYC and c-KIT, while others recognize two of the sequences tested or even all quadruplexes. None of them recognizes dsDNA. Quadruplex-binding DARPins constitute valuable tools for specific detection at very small scales and for the in vivo investigation of quadruplex DN

    Structural Basis for Foreign DNA Integration in CRISPR Adaptive Immunity

    Get PDF

    The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein

    Get PDF
    The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a highmobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4- dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria

    Wavelength Dependence of Solar Rotation and Solar Cycle UV Irradiance Variations

    Get PDF
    It is shown that for the 5-year period 1982 to 1987 the solar irradiance decrease is estimated to be about 5 to 7 percent over the spectral interval 195 to 225 nm. This change becomes progressively smaller with increasing wavelength. For the 2-1/3 year period, January 1987 to April 1989, the irradiance increases about 6 percent at 195 to 205 nm and about 2 percent between 215 to 250 nm. Both 27-day and 13.5-day relative amplitudes peak at the time near solar maximum (1982) but remain comparatively small between 1983 and the onset of solar cycle 22. An average 280 day oscillation is noted for wavelengths up to 230 nm. No physical mechanism is offered for this variation

    First-Year Curriculum Changes: Part Two

    Get PDF
    corecore