38,612 research outputs found

    Influence of OH- concentration on the illitization of kaolinite at high pressure

    Get PDF
    The products of hydrothermal reactions of kaolinite at 300°C and 1000 bars were studied in KOH solutions covering an OH- concentration, [OH-], of 1M to 3.5M. XRD patterns indicated a notable influence of the [OH-] on the reaction. At [OH]≥3M, the only stable phase was muscovite/illite. The content of muscovite/illite was calculated from the analysis of the diagnostic 060 reflections of kaolinite and muscovite/illite. The results showed a linear dependence of kaolinite and muscovite/illite contents with [OH-]. 27Al MAS NMR spectroscopy revealed the formation of small nuclei of K-F zeolite at high [OH-]. Finally, modelling of the 29Si MAS NMR spectra indicated that the Si/Al ratio of the muscovite/illite formed was very close to that of muscovite, at least in the mineral formed at low [OH-]. In good agreement with the XRD data, the quantification of the reaction products by 29Si MAS NMR indicated a linear decrease of the kaolinite content with increasing OH- concentration.Dirección General de Investigación Científica y Técnica CTQ2007-63297Junta de Andalucía P06-FQM-0217

    Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties

    Get PDF
    We present a multi-proxy mineral record based on X-ray diffraction and diffuse reflectance spectrophotometry analysis for two cores from the western Indus Shelf in order to reconstruct changing weathering intensities, sediment transport, and provenance variations since 13 ka. Core Indus-10 is located northwest of the Indus Canyon and exhibits fluctuations in smectite/(illite + chlorite) ratios that correlate with monsoon intensity. Higher smectite/(illite + chlorite) and lower illite crystallinity, normally associated with stronger weathering, peaked during the Early–Mid Holocene, the period of maximum summer monsoon. Hematite/goethite and magnetic susceptibility do not show clear co-variation, although they both increase at Indus-10 after 10 ka, as the monsoon weakened. At Indus-23, located on a clinoform just west of the canyon, hematite/goethite increased during a period of monsoon strengthening from 10 to 8 ka, consistent with increased seasonality and/or reworking of sediment deposited prior to or during the glacial maximum. After 2 ka terrigenous sediment accumulation rates in both cores increased together with redness and hematite/goethite, which we attribute to widespread cultivation of the floodplain triggering reworking, especially after 200 years ago. Over Holocene timescales sediment composition and mineralogy in two localities on the high-energy shelf were controlled by varying degrees of reworking, as well as climatically modulated chemical weathering

    Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    Get PDF
    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: • rocks acting as good insulators, deformed by NNW–SSE and E–W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases.• rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones.This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.Fil: Maffucci, R.. Universita Degli Studi Della Tuscia; Italia. Universita Degli Studi Roma Tre; ItaliaFil: Corrado, Sveva. Universita Degli Studi Roma Tre; ItaliaFil: Aldega, L.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Bigi, S.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Di Paolo, L.. Eni E&P Division; ItaliaFil: Giordano, G.. Universita Degli Studi Roma Tre; ItaliaFil: Invernizzi, C.. Universita Degli Di Camerino; Itali

    High-Temperature Mineral Formation after Firing Clay Materials Associated with Mined Coal in Teruel (Spain)

    Get PDF
    The production of porcelain stoneware has experienced a considerable increase. Therefore, it was necessary to undertake an investigation that would allow knowing the mineralogical evolution that porcelain stoneware undergoes during the firing process, as well as establishing the influence of the formation of mullite and other mineral or vitreous phases and their quantification. The firing transformations of mine spoils associated with mined coal in the Utrillas-Escucha-Estercuel and Ariño-Andorra areas are studied in this paper. The mineralogical composition of the bulk mine spoils is kaolinite, illite, chlorite, and smectites (in traces), with quartz and feldspar, and minor hematite, calcite, and dolomite. The main objective is to understand the generation of high-temperature mineral phases after firing, and their quantification. The formation of mullite and other high-temperature phases are studied from samples that include variable proportions of illite. Samples with a high content of illite generate mullite at 995 °C. Cristobalite was not detected as a high-temperature phase. Mullite is the most abundant mineral. The hercynite content is higher at low temperatures (995 °C), and hematite content is higher at 1150 °C. The vitreous phase represents about 50% of fired bodies. Despite observing a porous microstructure, the non-porous areas are well sintered

    Solid-state NMR characterisation of the thermal transformation of a Hungarian white illite

    Get PDF
    1H, 27Al, 29Si and 39K solid-state NMR are reported from a Hungarian illite 2:1 clay for samples heated up 1600 °C. This single-phase sample has a small amount of aluminium substitution in the silica layer and very low iron-content (0.4 wt%). Thermal analysis shows several events that can be related to features in the NMR spectra, and hence changes in the atomic scale structure. As dehydroxylation occurs there is increasing AlO4 and AlO5-contents. The silica and gibbsite layers become increasingly separated as the dehydroxylation progresses. Between 900 and 1000 °C the silica layer forms a potassium aluminosilicate glass. The gibbsite-layer forms spinel/γ-Al2O3 and some aluminium-rich mullite. Then on heating to 1600 °C changes in the 29Si and 27Al MAS NMR spectra are consistent with the aluminosilicate glass increasing its aluminium-content, the amount of mullite increasing probably with its silicon-content also increasing, and some α-Al2O3 forming

    Complex examination of the Upper Paleozoic siliciclastic rocks from southern Transdanubia, SW Hungary—Mineralogical, petrographic, and geochemical study

    Get PDF
    A vertical section of Upper Paleozoic sandstones from southern Transdanubia (Mecsek-Villány area, Tisza mega-unit, Hungary) has been analyzed for major and trace elements, including rare earth elements (REEs). In addition, the clay mineralogy of the sandstone samples and the petrography and geochemistry of gneiss and granitoid clasts extracted from the associated conglomerates have been determined. Geochemistry of the sandstone samples analyzed in this study shows that these rocks were predominantly derived from a felsic continental source; nevertheless, compositions vary systematically up-section. The Pennsylvanian (Upper Carboniferous) Téseny Formation has higher SiO(2) and lower Na(2)O, CaO, Sr, high field strength element (HFSE), and ΣREE contents relative to the Permian strata. Its high K(2)O and Rb contents together with the presence of abundant illite-sericite suggest a potassium metasomatism in this formation. Clay mineralogy and large ion lithophile element (LILE) contents of the Lower Permian Korpád Formation vary spatially and are interpreted as local variations in composition of the source region and postdepositional conditions. Zr and Hf abundances and REE patterns, however, show that this formation was derived from mature upper continental crust. The Upper Permian Cserdi Formation has higher TiO(2), Th, U, Y, Cr, and heavy (H) REE contents, and higher Cr/Th and Cr/Zr ratios relative to the underlying formations. These trends can be explained by a sedimentary system dominated by highly weathered detritus derived from combined recycled-orogen, basement-uplift, and volcanic-arc provenance in the Téseny Formation, with an increased proportion of less weathered detritus derived from combined volcanic and basement-uplift provenances in the Permian formations. Characteristics of the Cserdi unit may reflect relatively proximal derivation from a felsic volcanic source

    Evaluation of mineralogy per geological layers by Approximate Bayesian Computation

    Full text link
    We propose a new methodology to perform mineralogic inversion from wellbore logs based on a Bayesian linear regression model. Our method essentially relies on three steps. The first step makes use of Approximate Bayesian Computation (ABC) and selects from the Bayesian generator a set of candidates-volumes corresponding closely to the wellbore data responses. The second step gathers these candidates through a density-based clustering algorithm. A mineral scenario is assigned to each cluster through direct mineralogical inversion, and we provide a confidence estimate for each lithological hypothesis. The advantage of this approach is to explore all possible mineralogy hypotheses that match the wellbore data. This pipeline is tested on both synthetic and real datasets

    Using [delta] ph as a geochemical index of illite neoformation in saprolite

    Full text link
    Sal pH is routinely measured for agronomic purposes. When the difference between KCI pH and H2O pH, or ApH, yields positive values, it is used by soil scientists as a classification criterion for identifying anionic subgroups according to the Soil Taxonomy or geric properties according to the WRB. Negative values have not been granted much attention. Here we focus on the occurrence of highly negative ApH values in the weathering zone of profiles developed on gneiss in semiarid Northeast Brazil and semiarid South India and interpret them as proxies of a geochemical weathering process involving the neoformation of illite. Detailed optical, chemical and mineralogical characterizations involving scanning electron microscopy coupled with X-ray element mapping demonstrate the neoformation of illite inside plagioclase feldspar crystals after their partial dissolution. This study thus reveals that meteoric weathering is capable of producing Mite not only from mica, Le., by a transformation process, but also within non-alkali feldspar by a neoformation process. The ApH is shown to be a good proxy for detecting such weathering signatures because the recently neoformed Mate flakes, which present a significant compositional deficit in K, reveal their presence by a detectable uptake of K from the KCI solution. This finding changes the perspective over the origin of illite in continental environments, which has most commonly been attributed to hydrothermal processes. (Texte intégral

    Influence of presence of ammonium in the hydrothermal illitization of smectite

    Get PDF
    During diagenesis, several reactions induce changes both in phyllosilicates and organic matter, which in basins associated to the production of hydrocarbons leads to ammonium fixation in illite and micas [1] and to dissolution induced by organic acids [2] [3]. Dissolution processes may contribute to the smectite-to-illite transformation, stabilized by fixation of K (and NH4 +). Ammonium is a weak acid in solution. Under neutral conditions where the concentration of hydronium is very low (<10-7 M), ammonium contributes to smectite dissolution. The effect of organic acid on silicates dissolution is partially known, but the potential role of ammonium is completely novel.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore