7,951 research outputs found

    Therapeutic Efficacy of Cintredekin Besudotox (IL13-PE38QQR) in Murine Lung Fibrosis Is Unaffected by Immunity to Pseudomonas aeruginosa Exotoxin A

    Get PDF
    Background: We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13 during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of Pseudomonas aeruginosa exotoxin A (IL13-PE) and observed that the intranasal delivery of IL13-PE reduced bleomycin-induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE) would diminish the anti-fibrotic properties of IL13-PE. Methodology/Principal Findings: Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28 after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE. Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice. Conclusions: Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic response suggesting that the immune elicitation by this pathogen exerts anti-fibrotic effects.National Institutes of Health (NIH)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)NeoPharm, In

    Hypomethylation of IL10 and IL13 Promoters in CD4+ T Cells of Patients with Systemic Lupus Erythematosus

    Get PDF
    Interleukin- (IL-)10 and IL-13 play important roles in Th2 cell differentiation and production of autoantibodies in patients with (SLE). However, the mechanisms leading to IL10 and IL13 overexpression in SLE patients are not well understood. In this study, we confirm that the levels of both IL10 and IL13 mRNA in CD4+ T cells and of serum IL10 and IL13 proteins are increased in SLE patients. We show that the DNA methylation levels within IL10 and IL13 gene regulatory domains are reduced in SLE CD4+ T cells relative to healthy controls and negatively correlate with IL10 and IL13 mRNA expression. Moreover, treating healthy CD4+ T cells with the demethylating agent 5-azacytidine (5-azaC) increased IL10 and IL13 mRNA transcription. Together, our results show that promoter methylation is a determinant of IL10 and IL13 expression in CD4+ T cells, and we propose that DNA hypomethylation leads to IL10 and IL13 overexpression in SLE patients

    A comprehensive analysis of interleukin-4 receptor polymorphisms and their association with atopy and IgE regulation in childhood

    Get PDF
    Background: The interleukin (IL) 4/IL13 pathway is involved in the regulation of IgE production associated with atopic diseases. Numerous polymorphisms have been identified in the coding region of the IL4 receptor alpha chain (IL4Ra) and previous association studies have shown conflicting results. Based on their putative functional role, polymorphisms A148G, T1432C and A1652G, located in the coding region of IL4Ra, were selected for association and haplotype studies in a large German population sample (n = 1,120). Methods: Genotyping was performed using allele-specific PCR and restriction-enzyme-based assays. Haplotypes were estimated, and population-derived IgE percentiles (50% IgE >60 IU/ml, 66% IgE >115 IU/ml and 90% IgE >457 IU/ml) were calculated as outcome variables in a haplotype trend regression analysis. Results: In our population, only polymorphism T1432C showed a trend for a protective effect against atopic rhinitis ( odds ratio, OR: 0.52, 95% confidence interval, CI: 0.26 - 1.02, p = 0.05). When haplotypes were calculated, one haplotype was significantly associated with elevated serum IgE levels at the 50th percentile ( OR 1.60, 95% CI 1.08 - 2.37, p = 0.02). Conclusions: These data indicate that IL4Ra polymorphisms, although suggested to be functionally relevant by in vitro studies, have only a minor influence on IgE regulation in our large population sample. Copyright (C) 2004 S. Karger AG, Basel

    Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: the Rotterdam Study

    Get PDF
    The immune response involved in each phase of type 2 diabetes (T2D) development might be different. We aimed to identify novel inflammatory markers that predict progression from normoglycemia to pre-diabetes, incident T2D and insulin therapy. We used plasma levels of 26 inflammatory markers in 971 subjects from the Rotterdam Study. Among them 17 are novel and 9 previously studied. Cox regression models were built to perform survival analysis. Main Outcome Measures: During a follow-up of up to 14.7 years (between April 1, 1997, and Jan 1, 2012) 139 cases of pre-diabetes, 110 cases of T2D and 26 cases of insulin initiation were identified. In age and sex adjusted Cox models, IL13 (HR = 0.78), EN-RAGE (1.30), CFH (1.24), IL18 (1.22) and CRP (1.32) were associated with incident pre-diabetes. IL13 (0.62), IL17 (0.75), EN-RAGE (1.25), complement 3 (1.44), IL18 (1.35), TNFRII (1.27), IL1ra (1.24) and CRP (1.64) were associated with incident T2D. In multivariate models, IL13 (0.77), EN-RAGE (1.23) and CRP (1.26) remained associated with pre-diabetes. IL13 (0.67), IL17 (0.76) and CRP (1.32) remained associated with T2D. IL13 (0.55) was the only marker associated with initiation of insulin therapy in diabetics. Various inflammatory markers are associated with progression from normoglycemia to pre-diabetes (IL13, EN-RAGE, CRP), T2D (IL13, IL17, CRP) or insulin therapy start (IL13). Among them, EN-RAGE is a novel inflammatory marker for pre-diabetes, IL17 for incident T2D and IL13 for pre-diabetes, incident T2D and insulin therapy start

    Type III and N Einstein spacetimes in higher dimensions: general properties

    Full text link
    The Sachs equations governing the evolution of the optical matrix of geodetic WANDs (Weyl aligned null directions) are explicitly solved in n-dimensions in several cases which are of interest in potential applications. This is then used to study Einstein spacetimes of type III and N in the higher dimensional Newman-Penrose formalism, considering both Kundt and expanding (possibly twisting) solutions. In particular, the general dependence of the metric and of the Weyl tensor on an affine parameter r is obtained in a closed form. This allows us to characterize the peeling behaviour of the Weyl "physical" components for large values of r, and thus to discuss, e.g., how the presence of twist affects polarization modes, and qualitative differences between four and higher dimensions. Further, the r-dependence of certain non-zero scalar curvature invariants of expanding spacetimes is used to demonstrate that curvature singularities may generically be present. As an illustration, several explicit type N/III spacetimes that solve Einstein's vacuum equations (with a possible cosmological constant) in higher dimensions are finally presented.Comment: 19 page

    MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation.

    Get PDF
    MicroRNAs (miRNAs) exert powerful effects on immunity through coordinate regulation of multiple target genes in a wide variety of cells. Type 2 innate lymphoid cells (ILC2s) are tissue sentinel mediators of allergic inflammation. We established the physiological requirements for miRNAs in ILC2 homeostasis and immune function and compared the global miRNA repertoire of resting and activated ILC2s and T helper type 2 (TH2) cells. After exposure to the natural allergen papain, mice selectively lacking the miR-17∼92 cluster in ILC2s displayed reduced lung inflammation. Moreover, miR-17∼92-deficient ILC2s exhibited defective growth and cytokine expression in response to IL-33 and thymic stromal lymphopoietin in vitro. The miR-17∼92 cluster member miR-19a promoted IL-13 and IL-5 production and inhibited expression of several targets, including SOCS1 and A20, signaling inhibitors that limit IL-13 and IL-5 production. These findings establish miRNAs as important regulators of ILC2 biology, reveal overlapping but nonidentical miRNA-regulated gene expression networks in ILC2s and TH2 cells, and reinforce the therapeutic potential of targeting miR-19 to alleviate pathogenic allergic responses

    Intestinal epithelial cell-intrinsic deletion of Setd7 identifies role for developmental pathways in immunity to helminth infection

    Get PDF
    The intestine is a common site for a variety of pathogenic infections. Helminth infections continue to be major causes of disease worldwide, and are a significant burden on health care systems. Lysine methyltransferases are part of a family of novel attractive targets for drug discovery. SETD7 is a member of the Suppressor of variegation 3-9-Enhancer of zeste-Trithorax (SET) domain-containing family of lysine methyltransferases, and has been shown to methylate and alter the function of a wide variety of proteins in vitro. A few of these putative methylation targets have been shown to be important in resistance against pathogens. We therefore sought to study the role of SETD7 during parasitic infections. We find that Setd7-/- mice display increased resistance to infection with the helminth Trichuris muris but not Heligmosomoides polygyrus bakeri. Resistance to T. muris relies on an appropriate type 2 immune response that in turn prompts intestinal epithelial cells (IECs) to alter differentiation and proliferation kinetics. Here we show that SETD7 does not affect immune cell responses during infection. Instead, we found that IEC-specific deletion of Setd7 renders mice resistant to T. muris by controlling IEC turnover, an important aspect of anti-helminth immune responses. We further show that SETD7 controls IEC turnover by modulating developmental signaling pathways such as Hippo/YAP and Wnt/β-Catenin. We show that the Hippo pathway specifically is relevant during T. muris infection as verteporfin (a YAP inhibitor) treated mice became susceptible to T. muris. We conclude that SETD7 plays an important role in IEC biology during infection

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations
    corecore