177,473 research outputs found
II Workshop on Modeling and Simulation for Science and Engineering
II Workshop on Modeling and Simulation for Science and Engineering (II WMSSE) was a conference
conducted at Universidad Tecnológica de Bolívar, in the city of Cartagena de Indias, Colombia, on
September 24, 25 and 26, 2019. There, works in several topics of science, technology and engineering
were presented. Specially, the participants of conference wanted to bring some solutions to the actual
industrial requirements such as improvement and optimization of the heat transfer equipment, electronic
devices, system control by mean of computational modeling. Also, dynamic system control was widely
used for the prediction of power flow market, diffusion of bacteria in coffee production, stress
concentration in industrial machines, analysis of population dynamics, model of hydrological and
pluviometric networks, encryption for intercommunication of substation control centers, and others
Research and Education in Computational Science and Engineering
Over the past two decades the field of computational science and engineering
(CSE) has penetrated both basic and applied research in academia, industry, and
laboratories to advance discovery, optimize systems, support decision-makers,
and educate the scientific and engineering workforce. Informed by centuries of
theory and experiment, CSE performs computational experiments to answer
questions that neither theory nor experiment alone is equipped to answer. CSE
provides scientists and engineers of all persuasions with algorithmic
inventions and software systems that transcend disciplines and scales. Carried
on a wave of digital technology, CSE brings the power of parallelism to bear on
troves of data. Mathematics-based advanced computing has become a prevalent
means of discovery and innovation in essentially all areas of science,
engineering, technology, and society; and the CSE community is at the core of
this transformation. However, a combination of disruptive
developments---including the architectural complexity of extreme-scale
computing, the data revolution that engulfs the planet, and the specialization
required to follow the applications to new frontiers---is redefining the scope
and reach of the CSE endeavor. This report describes the rapid expansion of CSE
and the challenges to sustaining its bold advances. The report also presents
strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
Ontology engineering for simulation component reuse
Commercial-off-the-shelf (COTS) simulation packages (CSPs) are widely used in industry, although they have yet to operate across organizational boundaries. Reuse across organizations is restricted by the same semantic issues that restrict the inter-organizational use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architectures provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontologies to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of an ontology, connector software and web service discovery architecture. The ontology is extracted from simulation scenarios involving airport, restaurant and kitchen service suppliers. The ontology engineering framework and discovery architecture provide a novel approach to inter-organizational simulation, adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community
Self-Evaluation Applied Mathematics 2003-2008 University of Twente
This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
Stability, Causality, and Passivity in Electrical Interconnect Models
Modern packaging design requires extensive signal integrity simulations in order to assess the electrical performance of the system. The feasibility of such simulations is granted only when accurate and efficient models are available for all system parts and components having a significant influence on the signals. Unfortunately, model derivation is still a challenging task, despite the extensive research that has been devoted to this topic. In fact, it is a common experience that modeling or simulation tasks sometimes fail, often without a clear understanding of the main reason. This paper presents the fundamental properties of causality, stability, and passivity that electrical interconnect models must satisfy in order to be physically consistent. All basic definitions are reviewed in time domain, Laplace domain, and frequency domain, and all significant interrelations between these properties are outlined. This background material is used to interpret several common situations where either model derivation or model use in a computer-aided design environment fails dramatically.We show that the root cause for these difficulties can always be traced back to the lack of stability, causality, or passivity in the data providing the structure characterization and/or in the model itsel
Network of excellence in internet science: D2.1.1 repository of methodologies, design tools and use cases
- …
