3,350 research outputs found

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1≤Nc≤N1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    Source and Physical-Layer Network Coding for Correlated Two-Way Relaying

    Full text link
    In this paper, we study a half-duplex two-way relay channel (TWRC) with correlated sources exchanging bidirectional information. In the case, when both sources have the knowledge of correlation statistics, a source compression with physical-layer network coding (SCPNC) scheme is proposed to perform the distributed compression at each source node. When only the relay has the knowledge of correlation statistics, we propose a relay compression with physical-layer network coding (RCPNC) scheme to compress the bidirectional messages at the relay. The closed-form block error rate (BLER) expressions of both schemes are derived and verified through simulations. It is shown that the proposed schemes achieve considerable improvements in both error performance and throughput compared with the conventional non-compression scheme in correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201

    HFR Code: A Flexible Replication Scheme for Cloud Storage Systems

    Full text link
    Fractional repetition (FR) codes are a family of repair-efficient storage codes that provide exact and uncoded node repair at the minimum bandwidth regenerating point. The advantageous repair properties are achieved by a tailor-made two-layer encoding scheme which concatenates an outer maximum-distance-separable (MDS) code and an inner repetition code. In this paper, we generalize the application of FR codes and propose heterogeneous fractional repetition (HFR) code, which is adaptable to the scenario where the repetition degrees of coded packets are different. We provide explicit code constructions by utilizing group divisible designs, which allow the design of HFR codes over a large range of parameters. The constructed codes achieve the system storage capacity under random access repair and have multiple repair alternatives for node failures. Further, we take advantage of the systematic feature of MDS codes and present a novel design framework of HFR codes, in which storage nodes can be wisely partitioned into clusters such that data reconstruction time can be reduced when contacting nodes in the same cluster.Comment: Accepted for publication in IET Communications, Jul. 201

    Simplified Compute-and-Forward and Its Performance Analysis

    Full text link
    The compute-and-forward (CMF) method has shown a great promise as an innovative approach to exploit interference toward achieving higher network throughput. The CMF was primarily introduced by means of information theory tools. While there have been some recent works discussing different aspects of efficient and practical implementation of CMF, there are still some issues that are not covered. In this paper, we first introduce a method to decrease the implementation complexity of the CMF method. We then evaluate the exact outage probability of our proposed simplified CMF scheme, and hereby provide an upper bound on the outage probability of the optimum CMF in all SNR values, and a close approximation of its outage probability in low SNR regimes. We also evaluate the effect of the channel estimation error (CEE) on the performance of both optimum and our proposed simplified CMF by simulations. Our simulation results indicate that the proposed method is more robust against CEE than the optimum CMF method for the examples considered.Comment: Submitted to IET Communications, 29 pages, 7 figures, 1 table, latex, The authors are with the Wireless Research Laboratory (WRL), Department of Electrical Engineering, Sharif University of Technology, Tehran, Ira
    • …
    corecore