180,505 research outputs found

    Why Software Projects need Heroes (Lessons Learned from 1000+ Projects)

    Full text link
    A "hero" project is one where 80% or more of the contributions are made by the 20% of the developers. Those developers are called "hero" developers. In the literature, heroes projects are deprecated since they might cause bottlenecks in development and communication. However, there is little empirical evidence on this matter. Further, recent studies show that such hero projects are very prevalent. Accordingly, this paper explores the effect of having heroes in project, from a code quality perspective by analyzing 1000+ open source GitHub projects. Based on the analysis, this study finds that (a) majority of the projects are hero projects; and (b)the commits from "hero developers" (who contribute most to the code) result in far fewer bugs than other developers. That is, contrary to the literature, heroes are standard and very useful part of modern open source projects.Comment: 12 pages, 11 figures, 3 tables, IEEE Transactions on Software Engineerin

    Empirical Big Data Research: A Systematic Literature Mapping

    Full text link
    Background: Big Data is a relatively new field of research and technology, and literature reports a wide variety of concepts labeled with Big Data. The maturity of a research field can be measured in the number of publications containing empirical results. In this paper we present the current status of empirical research in Big Data. Method: We employed a systematic mapping method with which we mapped the collected research according to the labels Variety, Volume and Velocity. In addition, we addressed the application areas of Big Data. Results: We found that 151 of the assessed 1778 contributions contain a form of empirical result and can be mapped to one or more of the 3 V's and 59 address an application area. Conclusions: The share of publications containing empirical results is well below the average compared to computer science research as a whole. In order to mature the research on Big Data, we recommend applying empirical methods to strengthen the confidence in the reported results. Based on our trend analysis we consider Volume and Variety to be the most promising uncharted area in Big Data.Comment: Submitted to Springer journal Data Science and Engineerin

    Haptic Assembly and Prototyping: An Expository Review

    Full text link
    An important application of haptic technology to digital product development is in virtual prototyping (VP), part of which deals with interactive planning, simulation, and verification of assembly-related activities, collectively called virtual assembly (VA). In spite of numerous research and development efforts over the last two decades, the industrial adoption of haptic-assisted VP/VA has been slower than expected. Putting hardware limitations aside, the main roadblocks faced in software development can be traced to the lack of effective and efficient computational models of haptic feedback. Such models must 1) accommodate the inherent geometric complexities faced when assembling objects of arbitrary shape; and 2) conform to the computation time limitation imposed by the notorious frame rate requirements---namely, 1 kHz for haptic feedback compared to the more manageable 30-60 Hz for graphic rendering. The simultaneous fulfillment of these competing objectives is far from trivial. This survey presents some of the conceptual and computational challenges and opportunities as well as promising future directions in haptic-assisted VP/VA, with a focus on haptic assembly from a geometric modeling and spatial reasoning perspective. The main focus is on revisiting definitions and classifications of different methods used to handle the constrained multibody simulation in real-time, ranging from physics-based and geometry-based to hybrid and unified approaches using a variety of auxiliary computational devices to specify, impose, and solve assembly constraints. Particular attention is given to the newly developed 'analytic methods' inherited from motion planning and protein docking that have shown great promise as an alternative paradigm to the more popular combinatorial methods.Comment: Technical Report, University of Connecticut, 201

    Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey

    Full text link
    Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data, text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, political science, medical and linguistic science, etc. There are various methods for topic modeling, which Latent Dirichlet allocation (LDA) is one of the most popular methods in this field. Researchers have proposed various models based on the LDA in topic modeling. According to previous work, this paper can be very useful and valuable for introducing LDA approaches in topic modeling. In this paper, we investigated scholarly articles highly (between 2003 to 2016) related to Topic Modeling based on LDA to discover the research development, current trends and intellectual structure of topic modeling. Also, we summarize challenges and introduce famous tools and datasets in topic modeling based on LDA.Comment: arXiv admin note: text overlap with arXiv:1505.07302 by other author

    Data Management in Industry 4.0: State of the Art and Open Challenges

    Full text link
    Information and communication technologies are permeating all aspects of industrial and manufacturing systems, expediting the generation of large volumes of industrial data. This article surveys the recent literature on data management as it applies to networked industrial environments and identifies several open research challenges for the future. As a first step, we extract important data properties (volume, variety, traffic, criticality) and identify the corresponding data enabling technologies of diverse fundamental industrial use cases, based on practical applications. Secondly, we provide a detailed outline of recent industrial architectural designs with respect to their data management philosophy (data presence, data coordination, data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent literature from which we derive a taxonomy of the latest advances on industrial data enabling technologies and data centric services, spanning all the way from the field level deep in the physical deployments, up to the cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify interesting open challenges for future research. The concepts presented in this article thematically cover the largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected publications were drawn from two fields; the communications, networking and computation field as well as the industrial, manufacturing and automation field. The article can help the readers to deeply understand how data management is currently applied in networked industrial environments, and select interesting open research opportunities to pursue

    Performance and Programming Effort Trade-offs of Android Persistence Frameworks

    Full text link
    A fundamental building block of a mobile application is the ability to persist program data between different invocations. Referred to as \emph{persistence}, this functionality is commonly implemented by means of persistence frameworks. Without a clear understanding of the energy consumption, execution time, and programming effort of popular Android persistence frameworks, mobile developers lack guidelines for selecting frameworks for their applications. To bridge this knowledge gap, we report on the results of a systematic study of the performance and programming effort trade-offs of eight Android persistence frameworks, and provide practical recommendations for mobile application developers.Comment: Preprint version of Journal of Systems and Software submissio

    A Review on the Application of Blockchain for the Next Generation of Cybersecure Industry 4.0 Smart Factories

    Full text link
    Industry 4.0 is a concept devised for improving the way modern factories operate through the use of some of the latest technologies, like the ones used for creating Industrial Internet of Things (IIoT), robotics or Big Data applications. One of such technologies is blockchain, which is able to add trust, security and decentralization to different industrial fields. This article focuses on analyzing the benefits and challenges that arise when using blockchain and smart contracts to develop Industry 4.0 applications. In addition, this paper presents a thorough review on the most relevant blockchain-based applications for Industry 4.0 technologies. Thus, its aim is to provide a detailed guide for future Industry 4.0 developers that allows for determining how blockchain can enhance the next generation of cybersecure industrial applications

    Mathematical Software: Past, Present, and Future

    Full text link
    This paper provides some reflections on the field of mathematical software on the occasion of John Rice's 65th birthday. I describe some of the common themes of research in this field and recall some significant events in its evolution. Finally, I raise a number of issues that are of concern to future developments.Comment: To appear in the Proceedings of the International Symposium on Computational Sciences, Purdue University, May 21-22, 1999. 20 page

    Performance-oriented DevOps: A Research Agenda

    Full text link
    DevOps is a trend towards a tighter integration between development (Dev) and operations (Ops) teams. The need for such an integration is driven by the requirement to continuously adapt enterprise applications (EAs) to changes in the business environment. As of today, DevOps concepts have been primarily introduced to ensure a constant flow of features and bug fixes into new releases from a functional perspective. In order to integrate a non-functional perspective into these DevOps concepts this report focuses on tools, activities, and processes to ensure one of the most important quality attributes of a software system, namely performance. Performance describes system properties concerning its timeliness and use of resources. Common metrics are response time, throughput, and resource utilization. Performance goals for EAs are typically defined by setting upper and/or lower bounds for these metrics and specific business transactions. In order to ensure that such performance goals can be met, several activities are required during development and operation of these systems as well as during the transition from Dev to Ops. Activities during development are typically summarized by the term Software Performance Engineering (SPE), whereas activities during operations are called Application Performance Management (APM). SPE and APM were historically tackled independently from each other, but the newly emerging DevOps concepts require and enable a tighter integration between both activity streams. This report presents existing solutions to support this integration as well as open research challenges in this area

    A Fast Volume Integral Equation Solver with Linear Basis Functions for the Accurate Computation of Electromagnetic Fields in MRI

    Full text link
    A stable volume integral equation (VIE) solver based on polarization/magnetization currents is presented, for the accurate and efficient computation of the electromagnetic scattering from highly inhomogeneous and high contrast objects.We employ the Galerkin Method of Moments to discretize the formulation with discontinuous piecewise linear basis functions on uniform voxelized grids, allowing for the acceleration of the associated matrix-vector products in an iterative solver, with the help of FFT. Numerical results illustrate the superior accuracy and more stable convergence properties of the proposed framework, when compared against standard low order (piecewise constant) discretization schemes and a more conventional VIE formulation based on electric flux densities. Finally, the developed solver is applied to analyze complex geometries, including realistic human body models, typically used in modeling the interactions between electromagnetic waves and biological tissue.Comment: 13 pages, 6 figures, 8 Table
    corecore