106,673 research outputs found

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Deterministic scheduling for energy efficient and reliable communication in heterogeneous sensing environments in industrial wireless sensor networks

    Get PDF
    The present-day industries incorporate many applications, and complex processes, hence, a large number of sensors with dissimilar process deadlines and sensor update frequencies will be in place. This paper presents a scheduling algorithm, which takes into account the varying deadlines of the sensors connected to the cluster-head, and formulates a static schedule for Time Division Multiple Access (TDMA) based communication. The scheme uses IEEE802.15.4e superframe as a baseline and proposes a new superframe structure. For evaluation purposes the update frequencies of different industrial processes are considered. The scheduling algorithm is evaluated under varying network loads by increasing the number of nodes affiliated to a cluster-head. The static schedule generated by the scheduling algorithm offers reduced energy consumption, improved reliability, efficient network load management and improved information to control bits ratio

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development. During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences. This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed

    Constructing practical Fuzzy Extractors using QIM

    Get PDF
    Fuzzy extractors are a powerful tool to extract randomness from noisy data. A fuzzy extractor can extract randomness only if the source data is discrete while in practice source data is continuous. Using quantizers to transform continuous data into discrete data is a commonly used solution. However, as far as we know no study has been made of the effect of the quantization strategy on the performance of fuzzy extractors. We construct the encoding and the decoding function of a fuzzy extractor using quantization index modulation (QIM) and we express properties of this fuzzy extractor in terms of parameters of the used QIM. We present and analyze an optimal (in the sense of embedding rate) two dimensional construction. Our 6-hexagonal tiling construction offers ( log2 6 / 2-1) approx. 3 extra bits per dimension of the space compared to the known square quantization based fuzzy extractor
    • …
    corecore