593 research outputs found

    Towards Domain Generalization for ECG and EEG Classification: Algorithms and Benchmarks

    Full text link
    Despite their immense success in numerous fields, machine and deep learning systems have not yet been able to firmly establish themselves in mission-critical applications in healthcare. One of the main reasons lies in the fact that when models are presented with previously unseen, Out-of-Distribution samples, their performance deteriorates significantly. This is known as the Domain Generalization (DG) problem. Our objective in this work is to propose a benchmark for evaluating DG algorithms, in addition to introducing a novel architecture for tackling DG in biosignal classification. In this paper, we describe the Domain Generalization problem for biosignals, focusing on electrocardiograms (ECG) and electroencephalograms (EEG) and propose and implement an open-source biosignal DG evaluation benchmark. Furthermore, we adapt state-of-the-art DG algorithms from computer vision to the problem of 1D biosignal classification and evaluate their effectiveness. Finally, we also introduce a novel neural network architecture that leverages multi-layer representations for improved model generalizability. By implementing the above DG setup we are able to experimentally demonstrate the presence of the DG problem in ECG and EEG datasets. In addition, our proposed model demonstrates improved effectiveness compared to the baseline algorithms, exceeding the state-of-the-art in both datasets. Recognizing the significance of the distribution shift present in biosignal datasets, the presented benchmark aims at urging further research into the field of biomedical DG by simplifying the evaluation process of proposed algorithms. To our knowledge, this is the first attempt at developing an open-source framework for evaluating ECG and EEG DG algorithms.Comment: Accepted in IEEE Transactions on Emerging Topics in Computational Intelligenc

    Random Walks: A Review of Algorithms and Applications

    Get PDF
    A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this paper, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together.Comment: 13 pages, 4 figure
    • …
    corecore