112,724 research outputs found

    On The Positive Definiteness of Polarity Coincidence Correlation Coefficient Matrix

    Full text link
    Polarity coincidence correlator (PCC), when used to estimate the covariance matrix on an element-by-element basis, may not yield a positive semi-definite (PSD) estimate. Devlin et al. [1], claimed that element-wise PCC is not guaranteed to be PSD in dimensions p>3 for real signals. However, no justification or proof was available on this issue. In this letter, it is proved that for real signals with p<=3 and for complex signals with p<=2, a PSD estimate is guaranteed. Counterexamples are presented for higher dimensions which yield invalid covariance estimates.Comment: IEEE Signal Processing Letters, Volume 15, pp. 73-76, 200

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research
    corecore