22 research outputs found

    Automatic Labeling of Tweets for Crisis Response Using Distant Supervision

    Get PDF
    Current tweet classification models aimed at enhancing crisis response are based on supervised deep learning. They rely on the quality and quantity of human-labeled training data. Still, the available training data is small in size and imbalanced in coverage of crisis types, which prevents the models from generalization, and as it is manually labeled, it is also expensive to produce. To overcome these problems, distant supervision can be applied to automatically generate large-scale labeled data for tweet classification for crisis response. Experimental results on different crisis events show that our work can produce good quality labeled data from past and recent events. Substituting automatically labeled training data for part of the manually labeled training data has a minimal impact on the model performance, indicating that automatically labeled data can be used when no hand-labeled data is available

    Event management architecture for the monitoring and diagnosis of a fleet of trains: a case study

    Get PDF
    In recent years, more and more manufacturers and operators of fleets of mobile systems have been focusing their efforts on studying and developing conditional maintenance, monitoring, and diagnostic strategies to cope with an increasingly competitive, unstable, costly, and unpredictable environment. This paper proposes a case study concerning the application of a novel event management architecture, called EMH2, to a fleet of trains. This EMH2 architecture, which applies the holonic paradigm, aims to facilitate the monitoring and diagnosis of a fleet of mobile systems. It is based on a recursive decomposition of cooperative monitoring holons. The definition of a generic event modeling, called SurfEvent, is the second key element of the contribution. EMH2 has been designed to be applicable to any kind of system or equipment up to fleet level. The edge computing paradigm has been adopted for implementation purpose. The EMH2 architecture is designed to facilitate asynchronous and progressive onboard and off-board deployments. A real-world application of EMH2 to a fleet of ten trains currently in use, in collaboration with our industrial partner, Bombardier Transport, is presented. Three key performances indicators have been estimated by comparing EMH2 with the current industrial situation. These indicators are (1) the number of fleet maintenance visits, (2) the time needed by a maintenance operator to investigate and diagnose, and (3) the time needed by the system to update data regarding the health status and monitoring of trains. Results obtained outperformed industrial expectations. The paper finally discusses feedbacks from experience and limitations of the work. Document type: Articl

    THOR: A Hybrid Recommender System for the Personalized Travel Experience

    Get PDF
    One of the travelers’ main challenges is that they have to spend a great effort to find and choose the most desired travel offer(s) among a vast list of non-categorized and non-personalized items. Recommendation systems provide an effective way to solve the problem of information overload. In this work, we design and implement “The Hybrid Offer Ranker” (THOR), a hybrid, personalized recommender system for the transportation domain. THOR assigns every traveler a unique contextual preference model built using solely their personal data, which makes the model sensitive to the user’s choices. This model is used to rank travel offers presented to each user according to their personal preferences. We reduce the recommendation problem to one of binary classification that predicts the probability with which the traveler will buy each available travel offer. Travel offers are ranked according to the computed probabilities, hence to the user’s personal preference model. Moreover, to tackle the cold start problem for new users, we apply clustering algorithms to identify groups of travelers with similar profiles and build a preference model for each group. To test the system’s performance, we generate a dataset according to some carefully designed rules. The results of the experiments show that the THOR tool is capable of learning the contextual preferences of each traveler and ranks offers starting from those that have the higher probability of being selected

    Non-contact video-based assessment of the respiratory function using a RGB-D camera

    Get PDF
    A fully automatic, non-contact method for the assessment of the respiratory function is proposed using an RGB-D camera-based technology. The proposed algorithm relies on the depth channel of the camera to estimate the movements of the body’s trunk during breathing. It solves in fixed-time complexity, O(1), as the acquisition relies on the mean depth value of the target regions only using the color channels to automatically locate them. This simplicity allows the extraction of real-time values of the respiration, as well as the synchronous assessment on multiple body parts. Two different experiments have been performed: a first one conducted on 10 users in a single region and with a fixed breathing frequency, and a second one conducted on 20 users considering a simultaneous acquisition in two regions. The breath rate has then been computed and compared with a reference measurement. The results show a non-statistically significant bias of 0.11 breaths/min and 96% limits of agreement of -2.21/2.34 breaths/min regarding the breath-by-breath assessment. The overall real-time assessment shows a RMSE of 0.21 breaths/min. We have shown that this method is suitable for applications where respiration needs to be monitored in non-ambulatory and static environments.This research was funded by Ministerio de Ciencia e Innovación with grant number PID2020-116011.Postprint (published version

    Machine learning methods for sign language recognition: a critical review and analysis.

    Get PDF
    Sign language is an essential tool to bridge the communication gap between normal and hearing-impaired people. However, the diversity of over 7000 present-day sign languages with variability in motion position, hand shape, and position of body parts making automatic sign language recognition (ASLR) a complex system. In order to overcome such complexity, researchers are investigating better ways of developing ASLR systems to seek intelligent solutions and have demonstrated remarkable success. This paper aims to analyse the research published on intelligent systems in sign language recognition over the past two decades. A total of 649 publications related to decision support and intelligent systems on sign language recognition (SLR) are extracted from the Scopus database and analysed. The extracted publications are analysed using bibliometric VOSViewer software to (1) obtain the publications temporal and regional distributions, (2) create the cooperation networks between affiliations and authors and identify productive institutions in this context. Moreover, reviews of techniques for vision-based sign language recognition are presented. Various features extraction and classification techniques used in SLR to achieve good results are discussed. The literature review presented in this paper shows the importance of incorporating intelligent solutions into the sign language recognition systems and reveals that perfect intelligent systems for sign language recognition are still an open problem. Overall, it is expected that this study will facilitate knowledge accumulation and creation of intelligent-based SLR and provide readers, researchers, and practitioners a roadmap to guide future direction

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    Comprehensive review of vision-based fall detection systems

    Get PDF
    Vision-based fall detection systems have experienced fast development over the last years. To determine the course of its evolution and help new researchers, the main audience of this paper, a comprehensive revision of all published articles in the main scientific databases regarding this area during the last five years has been made. After a selection process, detailed in the Materials and Methods Section, eighty-one systems were thoroughly reviewed. Their characterization and classification techniques were analyzed and categorized. Their performance data were also studied, and comparisons were made to determine which classifying methods best work in this field. The evolution of artificial vision technology, very positively influenced by the incorporation of artificial neural networks, has allowed fall characterization to become more resistant to noise resultant from illumination phenomena or occlusion. The classification has also taken advantage of these networks, and the field starts using robots to make these systems mobile. However, datasets used to train them lack real-world data, raising doubts about their performances facing real elderly falls. In addition, there is no evidence of strong connections between the elderly and the communities of researchers

    Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look

    Get PDF
    Background and motivation: Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. Methods: Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. Findings and conclusions: UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach

    Big Data and the United Nations Sustainable Development Goals (UN SDGs) at a Glance

    Get PDF
    open access articleThe launch of the United Nations (UN) 17 Sustainable Development Goals (SDGs) in 2015 was a historic event, uniting countries around the world around the shared agenda of sustainable development with a more balanced relationship between human beings and the planet. The SDGs affect or impact almost all aspects of life, as indeed does the technological revolution, empowered by Big Data and their related technologies. It is inevitable that these two significant domains and their integration will play central roles in achieving the 2030 Agenda. This research aims to provide a comprehensive overview of how these domains are currently interacting, by illustrating the impact of Big Data on sustainable development in the context of each of the 17 UN SDGs
    corecore