2 research outputs found

    An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures

    Full text link
    In the past years, quantum computers more and more have evolved from an academic idea to an upcoming reality. IBM's project IBM Q can be seen as evidence of this progress. Launched in March 2017 with the goal to provide access to quantum computers for a broad audience, this allowed users to conduct quantum experiments on a 5-qubit and, since June 2017, also on a 16-qubit quantum computer (called IBM QX2 and IBM QX3, respectively). Revised versions of these 5-qubit and 16-qubit quantum computers (named IBM QX4 and IBM QX5, respectively) are available since September 2017. In order to use these, the desired quantum functionality (e.g. provided in terms of a quantum circuit) has to be properly mapped so that the underlying physical constraints are satisfied - a complex task. This demands solutions to automatically and efficiently conduct this mapping process. In this paper, we propose a methodology which addresses this problem, i.e. maps the given quantum functionality to a realization which satisfies all constraints given by the architecture and, at the same time, keeps the overhead in terms of additionally required quantum gates minimal. The proposed methodology is generic, can easily be configured for similar future architectures, and is fully integrated into IBM's SDK. Experimental evaluations show that the proposed approach clearly outperforms IBM's own mapping solution. In fact, for many quantum circuits, the proposed approach determines a mapping to the IBM architecture within minutes, while IBM's solution suffers from long runtimes and runs into a timeout of 1 hour in several cases. As an additional benefit, the proposed approach yields mapped circuits with smaller costs (i.e. fewer additional gates are required). All implementations of the proposed methodology is publicly available at http://iic.jku.at/eda/research/ibm_qx_mapping

    Reconfigurable and approximate computing for video coding

    Full text link
    The Chapter begins with a discussion of the constraints and needs of video coding systems. The lack in flexibility of traditional monolithic codec specifications, not suitable to model commonalities among codecs and foster reusability among successive codec generations/updates, was the main trigger for the development of a new standard initiative within the ISO/IEC MPEG committee, called reconfigurable video coding (RVC). The MPEG-RVC framework exploits the dataflow nature behind video coding to foster flexible and reconfigurable codec design, as well as to support dynamic reconfiguration. The Chapter goes on to consider that the inherent resiliency of various functional blocks (like motion estimation in the high-efficiency video coding, HEVC) and the varying levels of user perception make video coding suitable to apply approximate computing techniques. Approximate computing, if properly supported at design time, allows achieving run-time trade-offs, representing a new direction in hardware-software codesign research. The main assumption behind approximate computing, exploited within video coding, is that the degree of accuracy (in this case during codec execution) is not required to be the same all the time. The final part of the Chapter attempts to put together the concepts addressed and remarks on which are, in the authors' opinion, some interesting research directions.Comment: Chapater of the VLSI Architectures for Future Video Coding, IET Digital Library, 2019 (https://digital-library.theiet.org/content/books/10.1049/pbcs053e_ch9
    corecore