15 research outputs found

    VT-CLIP: Enhancing Vision-Language Models with Visual-guided Texts

    Full text link
    Contrastive Language-Image Pre-training (CLIP) has drawn increasing attention recently for its transferable visual representation learning. However, due to the semantic gap within datasets, CLIP's pre-trained image-text alignment becomes sub-optimal on downstream tasks, which severely harms its transferring performance. To better adapt the cross-modality embedding space, we propose to enhance CLIP via Visual-guided Texts, named VT-CLIP. Specifically, we guide textual features of different categories to adaptively explore informative regions on the image and aggregate visual features by attention mechanisms. In this way, the texts become visual-guided, namely, more semantically correlated with downstream images, which greatly benefits the category-wise matching process. In few-shot settings, we evaluate our VT-CLIP on 11 well-known classification datasets to demonstrate its effectiveness

    Union-net: A deep neural network model adapted to small data sets

    Full text link
    In real applications, generally small data sets can be obtained. At present, most of the practical applications of machine learning use classic models based on big data to solve the problem of small data sets. However, the deep neural network model has complex structure, huge model parameters, and training requires more advanced equipment, which brings certain difficulties to the application. Therefore, this paper proposes the concept of union convolution, designing a light deep network model union-net with a shallow network structure and adapting to small data sets. This model combines convolutional network units with different combinations of the same input to form a union module. Each union module is equivalent to a convolutional layer. The serial input and output between the 3 modules constitute a "3-layer" neural network. The output of each union module is fused and added as the input of the last convolutional layer to form a complex network with a 4-layer network structure. It solves the problem that the deep network model network is too deep and the transmission path is too long, which causes the loss of the underlying information transmission. Because the model has fewer model parameters and fewer channels, it can better adapt to small data sets. It solves the problem that the deep network model is prone to overfitting in training small data sets. Use the public data sets cifar10 and 17flowers to conduct multi-classification experiments. Experiments show that the Union-net model can perform well in classification of large data sets and small data sets. It has high practical value in daily application scenarios. The model code is published at https://github.com/yeaso/union-netComment: 13 pages, 6 figure

    Deeply Coupled Cross-Modal Prompt Learning

    Full text link
    Recent advancements in multimodal foundation models (e.g., CLIP) have excelled in zero-shot generalization. Prompt tuning involved in the knowledge transfer from foundation models to downstream tasks has gained significant attention recently. Existing prompt-tuning methods in cross-modal learning, however, either solely focus on language branch, or learn vision-language interaction in a shallow mechanism. In this context, we propose a Deeply coupled Cross-modal Prompt learning (DCP) method based on CLIP. DCP flexibly accommodates the interplay between vision and language with a Cross-Modal Prompt Attention (CMPA) mechanism, which enables the mutual exchange of respective representation through a well-connected multi-head attention module progressively and strongly. We then conduct comprehensive few-shot learning experiments on 11 image classification datasets and analyze the robustness to domain shift as well. Thorough experimental analysis evidently demonstrates the superb few-shot generalization and compelling domain adaption capacity of a well-executed DCP. The code can be found at https://github.com/GingL/CMPA.Comment: Accepted by ACL 2023 finding

    DiffKendall: A Novel Approach for Few-Shot Learning with Differentiable Kendall's Rank Correlation

    Full text link
    Few-shot learning aims to adapt models trained on the base dataset to novel tasks where the categories are not seen by the model before. This often leads to a relatively uniform distribution of feature values across channels on novel classes, posing challenges in determining channel importance for novel tasks. Standard few-shot learning methods employ geometric similarity metrics such as cosine similarity and negative Euclidean distance to gauge the semantic relatedness between two features. However, features with high geometric similarities may carry distinct semantics, especially in the context of few-shot learning. In this paper, we demonstrate that the importance ranking of feature channels is a more reliable indicator for few-shot learning than geometric similarity metrics. We observe that replacing the geometric similarity metric with Kendall's rank correlation only during inference is able to improve the performance of few-shot learning across a wide range of datasets with different domains. Furthermore, we propose a carefully designed differentiable loss for meta-training to address the non-differentiability issue of Kendall's rank correlation. Extensive experiments demonstrate that the proposed rank-correlation-based approach substantially enhances few-shot learning performance

    When hard negative sampling meets supervised contrastive learning

    Full text link
    State-of-the-art image models predominantly follow a two-stage strategy: pre-training on large datasets and fine-tuning with cross-entropy loss. Many studies have shown that using cross-entropy can result in sub-optimal generalisation and stability. While the supervised contrastive loss addresses some limitations of cross-entropy loss by focusing on intra-class similarities and inter-class differences, it neglects the importance of hard negative mining. We propose that models will benefit from performance improvement by weighting negative samples based on their dissimilarity to positive counterparts. In this paper, we introduce a new supervised contrastive learning objective, SCHaNe, which incorporates hard negative sampling during the fine-tuning phase. Without requiring specialized architectures, additional data, or extra computational resources, experimental results indicate that SCHaNe outperforms the strong baseline BEiT-3 in Top-1 accuracy across various benchmarks, with significant gains of up to 3.32%3.32\% in few-shot learning settings and 3.41%3.41\% in full dataset fine-tuning. Importantly, our proposed objective sets a new state-of-the-art for base models on ImageNet-1k, achieving an 86.14\% accuracy. Furthermore, we demonstrate that the proposed objective yields better embeddings and explains the improved effectiveness observed in our experiments

    PVP: Pre-trained Visual Parameter-Efficient Tuning

    Full text link
    Large-scale pre-trained transformers have demonstrated remarkable success in various computer vision tasks. However, it is still highly challenging to fully fine-tune these models for downstream tasks due to their high computational and storage costs. Recently, Parameter-Efficient Tuning (PETuning) techniques, e.g., Visual Prompt Tuning (VPT) and Low-Rank Adaptation (LoRA), have significantly reduced the computation and storage cost by inserting lightweight prompt modules into the pre-trained models and tuning these prompt modules with a small number of trainable parameters, while keeping the transformer backbone frozen. Although only a few parameters need to be adjusted, most PETuning methods still require a significant amount of downstream task training data to achieve good results. The performance is inadequate on low-data regimes, especially when there are only one or two examples per class. To this end, we first empirically identify the poor performance is mainly due to the inappropriate way of initializing prompt modules, which has also been verified in the pre-trained language models. Next, we propose a Pre-trained Visual Parameter-efficient (PVP) Tuning framework, which pre-trains the parameter-efficient tuning modules first and then leverages the pre-trained modules along with the pre-trained transformer backbone to perform parameter-efficient tuning on downstream tasks. Experiment results on five Fine-Grained Visual Classification (FGVC) and VTAB-1k datasets demonstrate that our proposed method significantly outperforms state-of-the-art PETuning methods

    CrAFT: Compression-Aware Fine-Tuning for Efficient Visual Task Adaptation

    Full text link
    Transfer learning has become a popular task adaptation method in the era of foundation models. However, many foundation models require large storage and computing resources, which makes off-the-shelf deployment impractical. Post-training compression techniques such as pruning and quantization can help lower deployment costs. Unfortunately, the resulting performance degradation limits the usability and benefits of such techniques. To close this performance gap, we propose CrAFT, a simple fine-tuning framework that enables effective post-training network compression. In CrAFT, users simply employ the default fine-tuning schedule along with sharpness minimization objective, simultaneously facilitating task adaptation and compression-friendliness. Contrary to the conventional sharpness minimization techniques, which are applied during pretraining, the CrAFT approach adds negligible training overhead as fine-tuning is done in under a couple of minutes or hours with a single GPU. The effectiveness of CrAFT, which is a general-purpose tool that can significantly boost one-shot pruning and post-training quantization, is demonstrated on both convolution-based and attention-based vision foundation models on a variety of target tasks. The code will be made publicly available.Comment: Preprin

    Elucidating and Overcoming the Challenges of Label Noise in Supervised Contrastive Learning

    Full text link
    Image classification datasets exhibit a non-negligible fraction of mislabeled examples, often due to human error when one class superficially resembles another. This issue poses challenges in supervised contrastive learning (SCL), where the goal is to cluster together data points of the same class in the embedding space while distancing those of disparate classes. While such methods outperform those based on cross-entropy, they are not immune to labeling errors. However, while the detrimental effects of noisy labels in supervised learning are well-researched, their influence on SCL remains largely unexplored. Hence, we analyse the effect of label errors and examine how they disrupt the SCL algorithm's ability to distinguish between positive and negative sample pairs. Our analysis reveals that human labeling errors manifest as easy positive samples in around 99% of cases. We, therefore, propose D-SCL, a novel Debiased Supervised Contrastive Learning objective designed to mitigate the bias introduced by labeling errors. We demonstrate that D-SCL consistently outperforms state-of-the-art techniques for representation learning across diverse vision benchmarks, offering improved robustness to label errors

    Meta Co-Training: Two Views are Better than One

    Full text link
    In many practical computer vision scenarios unlabeled data is plentiful, but labels are scarce and difficult to obtain. As a result, semi-supervised learning which leverages unlabeled data to boost the performance of supervised classifiers have received significant attention in recent literature. One major class of semi-supervised algorithms is co-training. In co-training two different models leverage different independent and sufficient "views" of the data to jointly make better predictions. During co-training each model creates pseudo labels on unlabeled points which are used to improve the other model. We show that in the common case when independent views are not available we can construct such views inexpensively using pre-trained models. Co-training on the constructed views yields a performance improvement over any of the individual views we construct and performance comparable with recent approaches in semi-supervised learning, but has some undesirable properties. To alleviate the issues present with co-training we present Meta Co-Training which is an extension of the successful Meta Pseudo Labels approach to two views. Our method achieves new state-of-the-art performance on ImageNet-10% with very few training resources, as well as outperforming prior semi-supervised work on several other fine-grained image classification datasets.Comment: 16 pages, 14 figures, 10 tables, for implementation see https://github.com/JayRothenberger/Meta-Co-Trainin
    corecore