85,717 research outputs found
Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions
Comprehension of spoken natural language is an essential component for robots
to communicate with human effectively. However, handling unconstrained spoken
instructions is challenging due to (1) complex structures including a wide
variety of expressions used in spoken language and (2) inherent ambiguity in
interpretation of human instructions. In this paper, we propose the first
comprehensive system that can handle unconstrained spoken language and is able
to effectively resolve ambiguity in spoken instructions. Specifically, we
integrate deep-learning-based object detection together with natural language
processing technologies to handle unconstrained spoken instructions, and
propose a method for robots to resolve instruction ambiguity through dialogue.
Through our experiments on both a simulated environment as well as a physical
industrial robot arm, we demonstrate the ability of our system to understand
natural instructions from human operators effectively, and how higher success
rates of the object picking task can be achieved through an interactive
clarification process.Comment: 9 pages. International Conference on Robotics and Automation (ICRA)
2018. Accompanying videos are available at the following links:
https://youtu.be/_Uyv1XIUqhk (the system submitted to ICRA-2018) and
http://youtu.be/DGJazkyw0Ws (with improvements after ICRA-2018 submission
Higher Auslander algebras of type and the higher Waldhausen -constructions
These notes are an expanded version of my talk at the ICRA 2018 in Prague,
Czech Republic; they are based on joint work with Tobias Dyckerhoff and Tashi
Walde. In them we relate Iyama's higher Auslander algebras of type
to Eilenberg--Mac Lane spaces in algebraic topology and to higher-dimensional
versions of the Waldhausen -construction from algebraic
-theory.Comment: 16 pages. The author's contribution to the Proceedings of the ICRA
2018, v.2 minor edits following referee repor
Fast and Reliable Autonomous Surgical Debridement with Cable-Driven Robots Using a Two-Phase Calibration Procedure
Automating precision subtasks such as debridement (removing dead or diseased
tissue fragments) with Robotic Surgical Assistants (RSAs) such as the da Vinci
Research Kit (dVRK) is challenging due to inherent non-linearities in
cable-driven systems. We propose and evaluate a novel two-phase coarse-to-fine
calibration method. In Phase I (coarse), we place a red calibration marker on
the end effector and let it randomly move through a set of open-loop
trajectories to obtain a large sample set of camera pixels and internal robot
end-effector configurations. This coarse data is then used to train a Deep
Neural Network (DNN) to learn the coarse transformation bias. In Phase II
(fine), the bias from Phase I is applied to move the end-effector toward a
small set of specific target points on a printed sheet. For each target, a
human operator manually adjusts the end-effector position by direct contact
(not through teleoperation) and the residual compensation bias is recorded.
This fine data is then used to train a Random Forest (RF) to learn the fine
transformation bias. Subsequent experiments suggest that without calibration,
position errors average 4.55mm. Phase I can reduce average error to 2.14mm and
the combination of Phase I and Phase II can reduces average error to 1.08mm. We
apply these results to debridement of raisins and pumpkin seeds as fragment
phantoms. Using an endoscopic stereo camera with standard edge detection,
experiments with 120 trials achieved average success rates of 94.5%, exceeding
prior results with much larger fragments (89.4%) and achieving a speedup of
2.1x, decreasing time per fragment from 15.8 seconds to 7.3 seconds. Source
code, data, and videos are available at
https://sites.google.com/view/calib-icra/.Comment: Code, data, and videos are available at
https://sites.google.com/view/calib-icra/. Final version for ICRA 201
Chaos and order in a finite universe
All inhabitants of this universe, from galaxies to people, are finite. Yet
the universe itself is often assumed to be infinite. If instead the universe is
topologically finite, then light and matter can take chaotic paths around the
compact geometry. Chaos may lead to ordered features in the distribution of
matter throughout space.Comment: 3 pages, contribution to the conference proceedings for ``The Chaotic
Universe'', ICRA, Rom
Supervised Remote Robot with Guided Autonomy and Teleoperation (SURROGATE): A Framework for Whole-Body Manipulation
The use of the cognitive capabilities of humans to help guide the autonomy of robotics platforms in what is typically called “supervised-autonomy” is becoming more commonplace in robotics research. The work discussed in this paper presents an approach to a human-in-the-loop mode of robot operation that integrates high level human cognition and commanding with the intelligence and processing power of autonomous systems. Our framework for a “Supervised Remote Robot with Guided Autonomy and Teleoperation” (SURROGATE) is demonstrated on a robotic platform consisting of a pan-tilt perception head, two 7-DOF arms connected by a single 7-DOF torso, mounted on a tracked-wheel base. We present an architecture that allows high-level supervisory commands and intents to be specified by a user that are then interpreted by the robotic system to perform whole body manipulation tasks autonomously. We use a concept of “behaviors” to chain together sequences of “actions” for the robot to perform which is then executed real time
Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping
Modern 3D laser-range scanners have a high data rate, making online
simultaneous localization and mapping (SLAM) computationally challenging.
Recursive state estimation techniques are efficient but commit to a state
estimate immediately after a new scan is made, which may lead to misalignments
of measurements. We present a 3D SLAM approach that allows for refining
alignments during online mapping. Our method is based on efficient local
mapping and a hierarchical optimization back-end. Measurements of a 3D laser
scanner are aggregated in local multiresolution maps by means of surfel-based
registration. The local maps are used in a multi-level graph for allocentric
mapping and localization. In order to incorporate corrections when refining the
alignment, the individual 3D scans in the local map are modeled as a sub-graph
and graph optimization is performed to account for drift and misalignments in
the local maps. Furthermore, in each sub-graph, a continuous-time
representation of the sensor trajectory allows to correct measurements between
scan poses. We evaluate our approach in multiple experiments by showing
qualitative results. Furthermore, we quantify the map quality by an
entropy-based measure.Comment: In: Proceedings of the International Conference on Robotics and
Automation (ICRA) 201
Data-Driven Grasp Synthesis - A Survey
We review the work on data-driven grasp synthesis and the methodologies for
sampling and ranking candidate grasps. We divide the approaches into three
groups based on whether they synthesize grasps for known, familiar or unknown
objects. This structure allows us to identify common object representations and
perceptual processes that facilitate the employed data-driven grasp synthesis
technique. In the case of known objects, we concentrate on the approaches that
are based on object recognition and pose estimation. In the case of familiar
objects, the techniques use some form of a similarity matching to a set of
previously encountered objects. Finally for the approaches dealing with unknown
objects, the core part is the extraction of specific features that are
indicative of good grasps. Our survey provides an overview of the different
methodologies and discusses open problems in the area of robot grasping. We
also draw a parallel to the classical approaches that rely on analytic
formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic
- …
