3 research outputs found

    The abstraction transition taxonomy: developing desired learning outcomes through the lens of situated cognition

    Get PDF
    We report on a post-hoc analysis of introductory programming lecture materials. The purpose of this analysis is to identify what knowledge and skills we are asking students to acquire, as situated in the activity, tools, and culture of what programmers do and how they think. The specific materials analyzed are the 133 Peer Instruction questions used in lecture to support cognitive apprenticeship -- honoring the situated nature of knowledge. We propose an Abstraction Transition Taxonomy for classifying the kinds of knowing and practices we engage students in as we seek to apprentice them into the programming world. We find students are asked to answer questions expressed using three levels of abstraction: English, CS Speak, and Code. Moreover, many questions involve asking students to transition between levels of abstraction within the context of a computational problem. Finally, by applying our taxonomy in classifying a range of introductory programming exams, we find that summative assessments (including our own) tend to emphasize a small range of the skills fostered in students during the formative/apprenticeship phase

    Emergence of computing education as a research discipline

    Get PDF
    This thesis investigates the changing nature and status of computing education research (CER) over a number of years, specifically addressing the question of whether computing education can legitimately be considered a research discipline. The principal approach to addressing this question is an examination of the published literature in computing education conferences and journals. A classification system was devised for this literature, one goal of the system being to clearly identify some publications as research – once a suitable definition of research was established. When the system is applied to a corpus of publications, it becomes possible to determine the proportion of those publications that are classified as research, and thence to detect trends over time and similarities and differences between publication venues. The classification system has been applied to all of the papers over several years in a number of major computing education conferences and journals. Much of the classification was done by the author alone, and the remainder by a team that he formed in order to assess the inter-rater reliability of the classification system. This classification work led to two subsequent projects, led by Associate Professor Judy Sheard and Professor Lauri Malmi, that devised and applied further classification systems to examine the research approaches and methods used in the work reported in computing education publications. Classification of nearly 2000 publications over ranges of 3-10 years uncovers both strong similarities and distinct differences between publication venues. It also establishes clear evidence of a substantial growth in the proportion of research papers over the years in question. These findings are considered in the light of published perspectives on what constitutes a discipline of research, and lead to a confident assertion that computing education can now rightly be considered a discipline of research
    corecore