8 research outputs found

    Exploring OCR Capabilities of GPT-4V(ision) : A Quantitative and In-depth Evaluation

    Full text link
    This paper presents a comprehensive evaluation of the Optical Character Recognition (OCR) capabilities of the recently released GPT-4V(ision), a Large Multimodal Model (LMM). We assess the model's performance across a range of OCR tasks, including scene text recognition, handwritten text recognition, handwritten mathematical expression recognition, table structure recognition, and information extraction from visually-rich document. The evaluation reveals that GPT-4V performs well in recognizing and understanding Latin contents, but struggles with multilingual scenarios and complex tasks. Specifically, it showed limitations when dealing with non-Latin languages and complex tasks such as handwriting mathematical expression recognition, table structure recognition, and end-to-end semantic entity recognition and pair extraction from document image. Based on these observations, we affirm the necessity and continued research value of specialized OCR models. In general, despite its versatility in handling diverse OCR tasks, GPT-4V does not outperform existing state-of-the-art OCR models. How to fully utilize pre-trained general-purpose LMMs such as GPT-4V for OCR downstream tasks remains an open problem. The study offers a critical reference for future research in OCR with LMMs. Evaluation pipeline and results are available at https://github.com/SCUT-DLVCLab/GPT-4V_OCR

    Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study

    Full text link
    The flourishing blossom of deep learning has witnessed the rapid development of text recognition in recent years. However, the existing text recognition methods are mainly proposed for English texts. As another widely-spoken language, Chinese text recognition (CTR) in all ways has extensive application markets. Based on our observations, we attribute the scarce attention on CTR to the lack of reasonable dataset construction standards, unified evaluation protocols, and results of the existing baselines. To fill this gap, we manually collect CTR datasets from publicly available competitions, projects, and papers. According to application scenarios, we divide the collected datasets into four categories including scene, web, document, and handwriting datasets. Besides, we standardize the evaluation protocols in CTR. With unified evaluation protocols, we evaluate a series of representative text recognition methods on the collected datasets to provide baselines. The experimental results indicate that the performance of baselines on CTR datasets is not as good as that on English datasets due to the characteristics of Chinese texts that are quite different from the Latin alphabet. Moreover, we observe that by introducing radical-level supervision as an auxiliary task, the performance of baselines can be further boosted. The code and datasets are made publicly available at https://github.com/FudanVI/benchmarking-chinese-text-recognitionComment: Code is available at https://github.com/FudanVI/benchmarking-chinese-text-recognitio
    corecore