115 research outputs found

    Reduced Feedback Designs for SDMA-OFDMA Systems

    Get PDF
    IEEE International Conference on Communications, ICC 2009; Dresden; Germany; 14 June 2009 through 18 June 2009In SDMA-OFDMA wireless communication systems, the feedback load increases with the number of users, subcarriers and antennas in the cell. In this paper, we propose two efficient reduced feedback algorithms by selecting the clusters at the user side. For each cluster, we select the users according to their norm and their orthogonality. We evaluate the performance of the user selection algorithms considering the quantization effect. We also design a specific codebook design to quantize CSI for the proposed criterion

    Improved estimation of clock offset in sensor networks

    Get PDF
    Clock synchronization is an important issue for the design of a network composed of small sensor nodes. Based on the two-way timing message exchange mechanism and assuming an exponential network delay distribution, many analytical results have been presented in the literature by applying the techniques from statistical signal processing. This paper derives the minimum variance unbiased estimator for the clock offset for both symmetric and asymmetric exponential delay cases. For the asymmetric delays, it is shown to be a function of both the minimum and the mean link delays. This result is a very significant contribution since only the minimum link delay observations have been used to estimate the clock offset in the past. For the symmetric case, it is shown to coincide with the maximum likelihood estimator. In addition, the result is also applicable to clock synchronization problem in general computer networks. ©2009 IEEE.published_or_final_versionThe IEEE International Conference on Communications (ICC 2009), Dresden, Germany, 14-18 June 2009. In Proceedings of IEEE ICC, 2009, p. 1-

    Relay-Induced Error Propagation Reduction for Decode-and-Forward Cooperative Communications

    No full text
    An attractive hybrid method of mitigating the effects of error propagation that may be imposed by the relay node (RN) on the destination node (DN) is proposed. We selected the most appropriate relay location for achieving a specific target Bit Error Ratio (BER) at the relay and signalled the RN-BER to the DN. The knowledge of this BER was then exploited by the decoder at the destination. Our simulation results show that when the BER at the RN is low, we do not have to activate the RN-BER aided decoder at the DN. However, when the RN-BER is high, significant system performance improvements may be achieved by activating the proposed RN-BER based decoding technique at the DN. For example, a power-reduction of up to about 19dB was recorded at a DN BER of 10-4

    Multiple Beamforming with Perfect Coding

    Full text link
    Perfect Space-Time Block Codes (PSTBCs) achieve full diversity, full rate, nonvanishing constant minimum determinant, uniform average transmitted energy per antenna, and good shaping. However, the high decoding complexity is a critical issue for practice. When the Channel State Information (CSI) is available at both the transmitter and the receiver, Singular Value Decomposition (SVD) is commonly applied for a Multiple-Input Multiple-Output (MIMO) system to enhance the throughput or the performance. In this paper, two novel techniques, Perfect Coded Multiple Beamforming (PCMB) and Bit-Interleaved Coded Multiple Beamforming with Perfect Coding (BICMB-PC), are proposed, employing both PSTBCs and SVD with and without channel coding, respectively. With CSI at the transmitter (CSIT), the decoding complexity of PCMB is substantially reduced compared to a MIMO system employing PSTBC, providing a new prospect of CSIT. Especially, because of the special property of the generation matrices, PCMB provides much lower decoding complexity than the state-of-the-art SVD-based uncoded technique in dimensions 2 and 4. Similarly, the decoding complexity of BICMB-PC is much lower than the state-of-the-art SVD-based coded technique in these two dimensions, and the complexity gain is greater than the uncoded case. Moreover, these aforementioned complexity reductions are achieved with only negligible or modest loss in performance.Comment: accepted to journa

    Golden Coded Multiple Beamforming

    Full text link
    The Golden Code is a full-rate full-diversity space-time code, which achieves maximum coding gain for Multiple-Input Multiple-Output (MIMO) systems with two transmit and two receive antennas. Since four information symbols taken from an M-QAM constellation are selected to construct one Golden Code codeword, a maximum likelihood decoder using sphere decoding has the worst-case complexity of O(M^4), when the Channel State Information (CSI) is available at the receiver. Previously, this worst-case complexity was reduced to O(M^(2.5)) without performance degradation. When the CSI is known by the transmitter as well as the receiver, beamforming techniques that employ singular value decomposition are commonly used in MIMO systems. In the absence of channel coding, when a single symbol is transmitted, these systems achieve the full diversity order provided by the channel. Whereas this property is lost when multiple symbols are simultaneously transmitted. However, uncoded multiple beamforming can achieve the full diversity order by adding a properly designed constellation precoder. For 2 \times 2 Fully Precoded Multiple Beamforming (FPMB), the general worst-case decoding complexity is O(M). In this paper, Golden Coded Multiple Beamforming (GCMB) is proposed, which transmits the Golden Code through 2 \times 2 multiple beamforming. GCMB achieves the full diversity order and its performance is similar to general MIMO systems using the Golden Code and FPMB, whereas the worst-case decoding complexity of O(sqrt(M)) is much lower. The extension of GCMB to larger dimensions is also discussed.Comment: accepted to conferenc

    1 x M packet-switched router based on the PPM header address for all-optical WDM networks

    Get PDF
    This paper presents an all-optical 1xM router architecture for simultaneous multiple-wavelength packet routing, without the need for wavelength conversion. The packet header address is based on the pulse position modulation (PPM) format, which allows the use of only a single-bitwise optical AND gate for fast packet header address correlation. The proposed scheme offers both multicast and broadcast capabilities. We’ve demonstrated a high speed packet routing at 160 Gb/s in simulation, with a low channel crosstalk (CXT) of ~ -27 dB with a channel spacing of > 0.4 THz and a demultiplexer bandwidth of 500 GHz. The output transfer function of the PPM header processing (PPM-HP) module is also investigated in this paper

    Fictitious Play with Time-Invariant Frequency Update for Network Security

    Full text link
    We study two-player security games which can be viewed as sequences of nonzero-sum matrix games played by an Attacker and a Defender. The evolution of the game is based on a stochastic fictitious play process, where players do not have access to each other's payoff matrix. Each has to observe the other's actions up to present and plays the action generated based on the best response to these observations. In a regular fictitious play process, each player makes a maximum likelihood estimate of her opponent's mixed strategy, which results in a time-varying update based on the previous estimate and current action. In this paper, we explore an alternative scheme for frequency update, whose mean dynamic is instead time-invariant. We examine convergence properties of the mean dynamic of the fictitious play process with such an update scheme, and establish local stability of the equilibrium point when both players are restricted to two actions. We also propose an adaptive algorithm based on this time-invariant frequency update.Comment: Proceedings of the 2010 IEEE Multi-Conference on Systems and Control (MSC10), September 2010, Yokohama, Japa
    corecore