2,096 research outputs found

    Recognizing Multi-talker Speech with Permutation Invariant Training

    Full text link
    In this paper, we propose a novel technique for direct recognition of multiple speech streams given the single channel of mixed speech, without first separating them. Our technique is based on permutation invariant training (PIT) for automatic speech recognition (ASR). In PIT-ASR, we compute the average cross entropy (CE) over all frames in the whole utterance for each possible output-target assignment, pick the one with the minimum CE, and optimize for that assignment. PIT-ASR forces all the frames of the same speaker to be aligned with the same output layer. This strategy elegantly solves the label permutation problem and speaker tracing problem in one shot. Our experiments on artificially mixed AMI data showed that the proposed approach is very promising.Comment: 5 pages, 6 figures, InterSpeech201

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Sampling-based speech parameter generation using moment-matching networks

    Full text link
    This paper presents sampling-based speech parameter generation using moment-matching networks for Deep Neural Network (DNN)-based speech synthesis. Although people never produce exactly the same speech even if we try to express the same linguistic and para-linguistic information, typical statistical speech synthesis produces completely the same speech, i.e., there is no inter-utterance variation in synthetic speech. To give synthetic speech natural inter-utterance variation, this paper builds DNN acoustic models that make it possible to randomly sample speech parameters. The DNNs are trained so that they make the moments of generated speech parameters close to those of natural speech parameters. Since the variation of speech parameters is compressed into a low-dimensional simple prior noise vector, our algorithm has lower computation cost than direct sampling of speech parameters. As the first step towards generating synthetic speech that has natural inter-utterance variation, this paper investigates whether or not the proposed sampling-based generation deteriorates synthetic speech quality. In evaluation, we compare speech quality of conventional maximum likelihood-based generation and proposed sampling-based generation. The result demonstrates the proposed generation causes no degradation in speech quality.Comment: Submitted to INTERSPEECH 201

    Audio Caption: Listen and Tell

    Full text link
    Increasing amount of research has shed light on machine perception of audio events, most of which concerns detection and classification tasks. However, human-like perception of audio scenes involves not only detecting and classifying audio sounds, but also summarizing the relationship between different audio events. Comparable research such as image caption has been conducted, yet the audio field is still quite barren. This paper introduces a manually-annotated dataset for audio caption. The purpose is to automatically generate natural sentences for audio scene description and to bridge the gap between machine perception of audio and image. The whole dataset is labelled in Mandarin and we also include translated English annotations. A baseline encoder-decoder model is provided for both English and Mandarin. Similar BLEU scores are derived for both languages: our model can generate understandable and data-related captions based on the dataset.Comment: accepted by ICASSP201

    Very Deep Convolutional Neural Networks for Robust Speech Recognition

    Full text link
    This paper describes the extension and optimization of our previous work on very deep convolutional neural networks (CNNs) for effective recognition of noisy speech in the Aurora 4 task. The appropriate number of convolutional layers, the sizes of the filters, pooling operations and input feature maps are all modified: the filter and pooling sizes are reduced and dimensions of input feature maps are extended to allow adding more convolutional layers. Furthermore appropriate input padding and input feature map selection strategies are developed. In addition, an adaptation framework using joint training of very deep CNN with auxiliary features i-vector and fMLLR features is developed. These modifications give substantial word error rate reductions over the standard CNN used as baseline. Finally the very deep CNN is combined with an LSTM-RNN acoustic model and it is shown that state-level weighted log likelihood score combination in a joint acoustic model decoding scheme is very effective. On the Aurora 4 task, the very deep CNN achieves a WER of 8.81%, further 7.99% with auxiliary feature joint training, and 7.09% with LSTM-RNN joint decoding.Comment: accepted by SLT 201

    Multi-scale Multi-band DenseNets for Audio Source Separation

    Full text link
    This paper deals with the problem of audio source separation. To handle the complex and ill-posed nature of the problems of audio source separation, the current state-of-the-art approaches employ deep neural networks to obtain instrumental spectra from a mixture. In this study, we propose a novel network architecture that extends the recently developed densely connected convolutional network (DenseNet), which has shown excellent results on image classification tasks. To deal with the specific problem of audio source separation, an up-sampling layer, block skip connection and band-dedicated dense blocks are incorporated on top of DenseNet. The proposed approach takes advantage of long contextual information and outperforms state-of-the-art results on SiSEC 2016 competition by a large margin in terms of signal-to-distortion ratio. Moreover, the proposed architecture requires significantly fewer parameters and considerably less training time compared with other methods.Comment: to appear at WASPAA 201
    • …
    corecore