214,504 research outputs found

    ARTMAP-IC and Medical Diagnosis: Instance Counting and Inconsistent Cases

    Full text link
    For complex database prediction problems such as medical diagnosis, the ARTMAP-IC neural network adds distributed prediction and category instance counting to the basic fuzzy ARTMAP system. For the ARTMAP match tracking algorithm, which controls search following a predictive error, a new version facilitates prediction with sparse or inconsistent data. Compared to the original match tracking algorithm (MT+), the new algorithm (MT-) better approximates the real-time network differential equations and further compresses memory without loss of performance. Simulations examine predictive accuracy on four medical databases: Pima Indian diabetes, breast cancer, heart disease, and gall bladder removal. ARTMAP-IC results arc equal to or better than those of logistic regression, K nearest neighbor (KNN), the ADAP perceptron, multisurface pattern separation, CLASSIT, instance-based (IBL), and C4. ARTMAP dynamics are fast, stable, and scalable. A voting strategy improves prediction by training the system several times on different orderings of an input set. Voting, instance counting, and distributed representations combine to form confidence estimates for competing predictions.National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-95-J-0409, N00014-95-0657

    Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials

    Get PDF
    This paper addresses the prediction of eye diagrams in high-speed data links with the inclusion of manufacturing tolerances. The statistical assessment of the system performance is done via the combined application of accurate and efficient IC models and of the stochastic collocation method with Lagrange interpolating polynomials. Numerical results on the computation of the eye opening profile for a realistic PCB interconnect with the inclusion of the effects of parameters uncertainties conclude the pape

    Insight Gained from Using Machine Learning Techniques to Predict the Discharge Capacities of Doped Spinel Cathode Materials for Lithium-Ion Batteries Applications

    Get PDF
    Abstract The electrochemical potentials of spinel lithium manganese oxide (LMO) have long been plagued by the significant Mn3+ dissolution during long cycle discharging, resulting in rapid capacity fading and short cycle life. Although the doping mechanisms are effective in suppressing these reactions, the correlations of their effects on the material properties and the improved discharging performance still remain uncovered. In this study, seven machine learning (ML) methods are applied to a manually curated dataset of 102 doped LMO spinel systems to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) from fundamental system properties like material molar mass and crystal structure dimension. Gradient boosting models achieved the best prediction powers for IC and EC with their errors estimated to be 11.90 and 11.77 mAhg−1, respectively. Besides, a higher formula molar mass of doped LMO can improve both capacities and additionally, a shorter crystal lattice dimension with a dopant with smaller electronegativity can slightly improve the value of the IC and EC, respectively. This study demonstrates the great potential of using ML models to both predict the discharging performance of doped spinel cathodes and identify the governing material properties for controlling the discharging performance

    dARTMAP: A Neural Network for Fast Distributed Supervised Learning

    Full text link
    Distributed coding at the hidden layer of a multi-layer perceptron (MLP) endows the network with memory compression and noise tolerance capabilities. However, an MLP typically requires slow off-line learning to avoid catastrophic forgetting in an open input environment. An adaptive resonance theory (ART) model is designed to guarantee stable memories even with fast on-line learning. However, ART stability typically requires winner-take-all coding, which may cause category proliferation in a noisy input environment. Distributed ARTMAP (dARTMAP) seeks to combine the computational advantages of MLP and ART systems in a real-time neural network for supervised learning, An implementation algorithm here describes one class of dARTMAP networks. This system incorporates elements of the unsupervised dART model as well as new features, including a content-addressable memory (CAM) rule for improved contrast control at the coding field. A dARTMAP system reduces to fuzzy ARTMAP when coding is winner-take-all. Simulations show that dARTMAP retains fuzzy ARTMAP accuracy while significantly improving memory compression.National Science Foundation (IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657
    • …
    corecore