424,423 research outputs found

    An Integrated Impact Indicator (I3): A New Definition of "Impact" with Policy Relevance

    Full text link
    Allocation of research funding, as well as promotion and tenure decisions, are increasingly made using indicators and impact factors drawn from citations to published work. A debate among scientometricians about proper normalization of citation counts has resolved with the creation of an Integrated Impact Indicator (I3) that solves a number of problems found among previously used indicators. The I3 applies non-parametric statistics using percentiles, allowing highly-cited papers to be weighted more than less-cited ones. It further allows unbundling of venues (i.e., journals or databases) at the article level. Measures at the article level can be re-aggregated in terms of units of evaluation. At the venue level, the I3 creates a properly weighted alternative to the journal impact factor. I3 has the added advantage of enabling and quantifying classifications such as the six percentile rank classes used by the National Science Board's Science & Engineering Indicators.Comment: Research Evaluation (in press

    Substance P induces localization of MIF/α1-inhibitor-3 complexes to umbrella cells via paracellular transit through the urothelium in the rat bladder

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is released into the intraluminal fluid during bladder inflammation in the rat complexed to α1-inhibitor-3 (A1-I3; a rodent proteinase inhibitor in the α-macroglobulin family). The location of A1-I3 in the bladder had not been investigated. Therefore, we examined the location of A1-I3 and MIF/A1-I3 complexes in the bladder and changes due to experimental inflammation. METHODS: Anesthetized male rats had bladders removed with no treatment (intact) or were injected with Substance P (SP; s.c.; saline vehicle). After one hour intraluminal fluid was removed, bladder was excised and MIF and A1-I3 levels were determined using ELISA and/or western-blotting. MIF co-immunoprecipitation determined MIF/A1-I3 complexes in the bladder. Bladder sections were immunostained for A1-I3 and MIF/A1-I3. RESULTS: A1-I3 immunostaining was observed in interstitial spaces throughout the bladder (including submucosa) but not urothelium in intact and saline-treated rats. RT-PCR showed that the bladder does not synthesize A1-I3, therefore, A1-I3 in the interstitial space of the bladder must be plasma derived. In SP-treated rats, A1-I3 in the bladder increased and A1-I3 was observed traversing through the urothelium. Umbrella cells that do not show MIF and/or A1-I3 immunostaining in intact or saline-treated rats, showed co-localization of MIF and A1-I3 after SP-treatment. Western blotting demonstrated that in the bladder MIF formed non-covalent interactions and also binds covalently to A1-I3 to form high molecular weight MIF/A1-I3 complexes (170, 130 and 75-kDa, respectively, verified by co-immunoprecipitation). SP-induced inflammation selectively reduced 170-kDa MIF/A1-I3 in the bladder while increasing 170 and 130-kDa MIF/A1-I3 in the intraluminal fluid. CONCLUSION: A1-I3 and MIF/A1-I3 complexes are resident in bladder interstitium. During SP-induced inflammation, MIF/A1-I3 complexes are released from the bladder into the lumen. Binding of MIF/A1-I3 complexes to urothelial cells during inflammation suggests these complexes participate in the inflammatory reaction through activation of receptors for MIF and/or for A1-I3

    Assessing the Effectiveness of Teach For America's Investing in Innovation Scale-Up

    Get PDF
    In 2010, TFA launched a major expansion effort, funded in part by a five-year Investing in Innovation (i3) scale-up grant of $50 million from the U.S. Department of Education. By the 2012 -- 2013 school year -- the second year of the scale-up -- TFA had expanded its placements of first- and second-year corps members by 25 percent. This study examines the effectiveness of TFA elementary school teachers hired during the first two years of the i3 scale-up, relative to other teachers in the same grades and school

    Supporting and Scaling Change: Lessons From the First Round of the Investing in Innovation (i3) Program

    Get PDF
    Assesses the degree to which the i3 program helped advance innovation in public education. Outlines takeaways, challenges, and recommendations for the Education Department and grantmakers, including optimizing support for different stages of innovation

    Impacts of the Teach For America Investing in Innovation Scale-Up

    Get PDF
    In 2010, Teach For America (TFA) launched a major expansion effort, funded in part by a five-year Investing in Innovation (i3) scale-up grant of $50 million from the U.S. Department of Education. Using a rigorous random assignment design to examine the effectiveness of TFA elementary school teachers in the second year of the i3 scale-up, Mathematica Policy Research found that first- and second-year corps members recruited and trained during the scale-up were as effective as other teachers in the same high-poverty schools in both reading and math. To estimate the effectiveness of TFA teachers relative to the comparison teachers, we compared end-of-year test scores of students assigned to the TFA teachers and those assigned to the comparison teachers. Because students in the study were randomly assigned to teachers, we can attribute systematic differences in achievement at the end of the study school year to the relative effectiveness of TFA and comparison teachers, rather than to the types of students taught by these two different groups of teachers. In addition to the impact analysis described in this report, the evaluation included an implementation analysis that describes key features of TFA's program model and its implementation of the i3 scale-up
    corecore