7,284 research outputs found

    Characterizing the strongly jump-traceable sets via randomness

    Full text link
    We show that if a set AA is computable from every superlow 1-random set, then AA is strongly jump-traceable. This theorem shows that the computably enumerable (c.e.) strongly jump-traceable sets are exactly the c.e.\ sets computable from every superlow 1-random set. We also prove the analogous result for superhighness: a c.e.\ set is strongly jump-traceable if and only if it is computable from every superhigh 1-random set. Finally, we show that for each cost function cc with the limit condition there is a 1-random Δ20\Delta^0_2 set YY such that every c.e.\ set A≤TYA \le_T Y obeys cc. To do so, we connect cost function strength and the strength of randomness notions. This result gives a full correspondence between obedience of cost functions and being computable from Δ20\Delta^0_2 1-random sets.Comment: 41 page

    Finding subsets of positive measure

    Full text link
    An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero ss-dimensional Hausdorff measure Hs\mathcal H^s contains a closed subset of non-zero (and indeed finite) Hs\mathcal H^s-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the parameter needed to define such a closed set. Among other results, we show that given a (lightface) Σ11\Sigma^1_1 set of reals in Cantor space, there is always a Π10(O)\Pi^0_1(\mathcal{O}) subset on non-zero Hs\mathcal H^s-measure definable from Kleene's O\mathcal O. On the other hand, there are Π20\Pi^0_2 sets of reals where no hyperarithmetic real can define a closed subset of non-zero measure.Comment: This is an extended journal version of the conference paper "The Strength of the Besicovitch--Davies Theorem". The final publication of that paper is available at Springer via http://dx.doi.org/10.1007/978-3-642-13962-8_2
    • …
    corecore