54 research outputs found

    Topographic Gromov-Hausdorff quantum Hypertopology for Quantum Proper Metric Spaces

    Full text link
    We construct a topology on the class of pointed proper quantum metric spaces which generalizes the topology of the Gromov-Hausdorff distance on proper metric spaces, and the topology of the dual propinquity on Leibniz quantum compact metric spaces. A pointed proper quantum metric space is a special type of quantum locally compact metric space whose topography is proper, and with properties modeled on Leibniz quantum compact metric spaces, though they are usually not compact and include all the classical proper metric spaces. Our topology is obtained from an infra-metric which is our analogue of the Gromov-Hausdorff distance, and which is null only between isometrically isomorphic pointed proper quantum metric spaces. Thus, we propose a new framework which extends noncommutative metric geometry, and in particular noncommutative Gromov-Hausdorff topology, to the realm of quantum locally compact metric spaces.Comment: 67 Pages, Preliminary Versio

    STRONG PROXIMITIES ON SMOOTH MANIFOLDS AND VORONOÏ DIAGRAMS

    Get PDF

    Improved Nearness Research

    Get PDF
    In the realm of Bounded Topology we now consider supernearness spaces as a common generalization of various kinds of topological structures. Among them the so-called Lodato spaces are of significant interest. In one direction they are standing in one-to-one correspondence to some kind of topological extensions. This last statement also holds for contiguity spaces in the sense of Ivanova and Ivanov, respectively and moreover for bunch-determined nearness spaces as Bentley has shown in the past. Further, Do?tch?nov proved that the compactly determined Hausdorff extensions of a given topological space are closely connected with a class of supertopologies which he called b-supertopologies. Now, the new class of supernearness spaces—called paranearness spaces—generalize all of them, and moreover its subclass of clan spaces is in one-to-one correspondence to a certain kind of symmetric strict topological extension. This is leading us to one theorem which generalize all former mentioned

    Curved Noncommutative Tori as Leibniz Quantum Compact Metric Spaces

    Full text link
    We prove that curved noncommutative tori, introduced by Dabrowski and Sitarz, are Leibniz quantum compact metric spaces and that they form a continuous family over the group of invertible matrices with entries in the commutant of the quantum tori in the regular representation, when this group is endowed with a natural length function.Comment: 16 Pages, v3: accepted in Journal of Math. Physic
    corecore