3 research outputs found

    Multiplication fusion of sparse and collaborative-competitive representation for image classification

    Full text link
    Representation based classification methods have become a hot research topic during the past few years, and the two most prominent approaches are sparse representation based classification (SRC) and collaborative representation based classification (CRC). CRC reveals that it is the collaborative representation rather than the sparsity that makes SRC successful. Nevertheless, the dense representation of CRC may not be discriminative which will degrade its performance for classification tasks. To alleviate this problem to some extent, we propose a new method called sparse and collaborative-competitive representation based classification (SCCRC) for image classification. Firstly, the coefficients of the test sample are obtained by SRC and CCRC, respectively. Then the fused coefficient is derived by multiplying the coefficients of SRC and CCRC. Finally, the test sample is designated to the class that has the minimum residual. Experimental results on several benchmark databases demonstrate the efficacy of our proposed SCCRC. The source code of SCCRC is accessible at https://github.com/li-zi-qi/SCCRC.Comment: submitted to International Journal of Machine Learning and Cybernetic

    HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification

    Full text link
    Hyperspectral image (HSI) classification is widely used for the analysis of remotely sensed images. Hyperspectral imagery includes varying bands of images. Convolutional Neural Network (CNN) is one of the most frequently used deep learning based methods for visual data processing. The use of CNN for HSI classification is also visible in recent works. These approaches are mostly based on 2D CNN. Whereas, the HSI classification performance is highly dependent on both spatial and spectral information. Very few methods have utilized the 3D CNN because of increased computational complexity. This letter proposes a Hybrid Spectral Convolutional Neural Network (HybridSN) for HSI classification. Basically, the HybridSN is a spectral-spatial 3D-CNN followed by spatial 2D-CNN. The 3D-CNN facilitates the joint spatial-spectral feature representation from a stack of spectral bands. The 2D-CNN on top of the 3D-CNN further learns more abstract level spatial representation. Moreover, the use of hybrid CNNs reduces the complexity of the model compared to 3D-CNN alone. To test the performance of this hybrid approach, very rigorous HSI classification experiments are performed over Indian Pines, Pavia University and Salinas Scene remote sensing datasets. The results are compared with the state-of-the-art hand-crafted as well as end-to-end deep learning based methods. A very satisfactory performance is obtained using the proposed HybridSN for HSI classification. The source code can be found at \url{https://github.com/gokriznastic/HybridSN}.Comment: Published in IEEE Geoscience and Remote Sensing Letter

    Multi-local Collaborative AutoEncoder

    Full text link
    The excellent performance of representation learning of autoencoders have attracted considerable interest in various applications. However, the structure and multi-local collaborative relationships of unlabeled data are ignored in their encoding procedure that limits the capability of feature extraction. This paper presents a Multi-local Collaborative AutoEncoder (MC-AE), which consists of novel multi-local collaborative representation RBM (mcrRBM) and multi-local collaborative representation GRBM (mcrGRBM) models. Here, the Locality Sensitive Hashing (LSH) method is used to divide the input data into multi-local cross blocks which contains multi-local collaborative relationships of the unlabeled data and features since the similar multi-local instances and features of the input data are divided into the same block. In mcrRBM and mcrGRBM models, the structure and multi-local collaborative relationships of unlabeled data are integrated into their encoding procedure. Then, the local hidden features converges on the center of each local collaborative block. Under the collaborative joint influence of each local block, the proposed MC-AE has powerful capability of representation learning for unsupervised clustering. However, our MC-AE model perhaps perform training process for a long time on the large-scale and high-dimensional datasets because more local collaborative blocks are integrate into it. Five most related deep models are compared with our MC-AE. The experimental results show that the proposed MC-AE has more excellent capabilities of collaborative representation and generalization than the contrastive deep models
    corecore