2 research outputs found

    A Neural Network Method for Classification of Sunlit and Shaded Components of Wheat Canopies in the Field Using High-Resolution Hyperspectral Imagery

    Get PDF
    (1) Background: Information rich hyperspectral sensing, together with robust image analysis, is providing new research pathways in plant phenotyping. This combination facilitates the acquisition of spectral signatures of individual plant organs as well as providing detailed information about the physiological status of plants. Despite the advances in hyperspectral technology in field-based plant phenotyping, little is known about the characteristic spectral signatures of shaded and sunlit components in wheat canopies. Non-imaging hyperspectral sensors cannot provide spatial information; thus, they are not able to distinguish the spectral reflectance differences between canopy components. On the other hand, the rapid development of high-resolution imaging spectroscopy sensors opens new opportunities to investigate the reflectance spectra of individual plant organs which lead to the understanding of canopy biophysical and chemical characteristics. (2) Method: This study reports the development of a computer vision pipeline to analyze ground-acquired imaging spectrometry with high spatial and spectral resolutions for plant phenotyping. The work focuses on the critical steps in the image analysis pipeline from pre-processing to the classification of hyperspectral images. In this paper, two convolutional neural networks (CNN) are employed to automatically map wheat canopy components in shaded and sunlit regions and to determine their specific spectral signatures. The first method uses pixel vectors of the full spectral features as inputs to the CNN model and the second method integrates the dimension reduction technique known as linear discriminate analysis (LDA) along with the CNN to increase the feature discrimination and improves computational efficiency. (3) Results: The proposed technique alleviates the limitations and lack of separability inherent in existing pre-defined hyperspectral classification methods. It optimizes the use of hyperspectral imaging and ensures that the data provide information about the spectral characteristics of the targeted plant organs, rather than the background. We demonstrated that high-resolution hyperspectral imagery along with the proposed CNN model can be powerful tools for characterizing sunlit and shaded components of wheat canopies in the field. The presented method will provide significant advances in the determination and relevance of spectral properties of shaded and sunlit canopy components under natural light conditions

    Hyperspectral Image Classification Based on Two-Stage Subspace Projection

    No full text
    Hyperspectral image (HSI) classification is a widely used application to provide important information of land covers. Each pixel of an HSI has hundreds of spectral bands, which are often considered as features. However, some features are highly correlated and nonlinear. To address these problems, we propose a new discrimination analysis framework for HSI classification based on the Two-stage Subspace Projection (TwoSP) in this paper. First, the proposed framework projects the original feature data into a higher-dimensional feature subspace by exploiting the kernel principal component analysis (KPCA). Then, a novel discrimination-information based locality preserving projection (DLPP) method is applied to the preceding KPCA feature data. Finally, an optimal low-dimensional feature space is constructed for the subsequent HSI classification. The main contributions of the proposed TwoSP method are twofold: (1) the discrimination information is utilized to minimize the within-class distance in a small neighborhood, and (2) the subspace found by TwoSP separates the samples more than they would be if DLPP was directly applied to the original HSI data. Experimental results on two real-world HSI datasets demonstrate the effectiveness of the proposed TwoSP method in terms of classification accuracy
    corecore